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Affect is a fundamental property of brain function. The 
hedonic quality and motivational relevance of sensory stim-
uli govern the strength of brain responses to sensory cues 

and drive learning1,2. Much attention has been devoted to under-
standing how affect influences behavior and is disrupted in psycho-
pathology and neurological disorders, but less is known about the 
neural structure of affective processes themselves—how they are 
represented in the brain and whether they converge on generalized 
(common) representations of value.

Affective experiences are often defined in terms of the ‘core’ 
dimensions valence and arousal3,4 or approach-avoidance tenden-
cies5, implicitly assuming a level of interchangeability among stimu-
lus types. Neuroeconomic theories postulate a ‘common currency’ 
for value6,7, whereby signals from diverse reinforcers are integrated 
into a common representation that shapes decision-making and 
behavior. These ideas have shaped clinical research. For example, 
emotional facial expressions are commonly used as probes of nega-
tive affect across clinical conditions8,9. Likewise, pain neuroimaging 
has concentrated on a few types of stimuli, most commonly heat, as 
probes of pain sensitivity in general10.

If different types of affective stimuli can be used interchangeably, 
any aversive stimulus might be suitable for probing ‘negative affect’ 
systems (for example, as defined by the National Institutes of Health 
(NIH) Research Domain Criteria11). If they cannot, important basic 
and clinical effects could be missed, for example, if a stimulus type 
used is not relevant for the effect or population studied. Theories 
of affect and computational accounts of learning, predictive cod-
ing and active inference might need to be extended to account for 
reinforcer-specific and stimulus-type-specific brain processes12.

Evidence for shared neural representations is mixed. On one 
hand, animal studies have identified cross-modal coding of affective 

information in single neurons7,13, and human functional magnetic 
resonance imaging (fMRI) studies have identified commonalities 
across aversive stimulus types in ventromedial and orbital prefron-
tal cortices (vMPFC and OFC, respectively), anterior midcingulate 
cortex (aMCC) and anterior insula (aINS)14–16. Meta-analyses have 
identified potential neural substrates for ‘core’ affective dimensions 
(valence and arousal) in the OFC, MPFC, nucleus accumbens (NAC)/
ventral striatum (vStr) and amygdala17,18. On the other hand, several 
theories suggest that the brain is organized into separable neural 
processes for different types of negative affect19,20. Although these 
are labeled as ‘negative’ or ‘aversive’, these labels may be culturally 
constructed categories rather than fundamental properties of brain 
organization21. fMRI studies have identified distinct activity patterns 
for different categories of emotion and affective stimulus types16,22–27 
(although these may also reflect constructed categories21). Animal 
studies have identified neuronal ensembles specific to distinct types 
and aspects of nociception28–30 and affective states like thirst31–33.

Evidence for common and stimulus-type-specific representa-
tions of negative affect have largely been investigated separately, 
in different studies and paradigms, rather than comparing them 
directly. The latter was the goal of the current study.

In study 1, we measured fMRI responses to four types of aversive 
stimuli—painful heat, painful pressure, aversive images and aver-
sive sounds—and a positive affective control (pleasant images) in 
N = 55 healthy participants (Fig. 1a). Including four intensity lev-
els per type and subjective post-trial ratings on a common rating 
scale allowed us to identify fMRI patterns that tracked subjective 
aversiveness across all stimulus types (‘common negative affect’) or 
in a stimulus-type-specific fashion. Partial least squares regression 
(PLS-R) provided a framework for jointly estimating both com-
mon and stimulus-type-specific representations34,35 (Supplementary 
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Fig. 1), and yielded predictive models whose sensitivity and speci-
ficity for negative affect could be quantitatively evaluated in new 
individuals. In several prospective samples (studies 2–6; N = 401 
participants), we tested the final models to evaluate their predic-
tive accuracy (replicability), generalizability across studies and gen-
eralizability across stimulus types versus specificity to a particular 
type. This framework allowed us to test: (1) whether there is a neu-
ral representation of common ‘negative affect’ across stimulus types 
that predicts the degree of negative affect experienced in response 
to any stimulus; (2) whether there are also stimulus-type-specific 
representations of negative affect; (3) whether these representations 
are specific to aversive stimuli or also respond to positive stimuli, 
which could signal encoding of arousal or salience; and (4) the rela-
tive importance of common and type-specific representations in 
jointly predicting negative affect ratings in new individuals, assess-
ing their utility as neuromarkers in future studies36.

results
Behavioral results. In study 1, N = 55 participants (24 females) expe-
rienced four types of aversive stimuli, during fMRI at 3T (Methods). 
Negative affect induced by these stimuli was measured on a uniform 
scale across stimulus types, allowing direct comparisons across sen-
sory inputs despite variation in stimulus properties. Each stimulus 
type was rated as moderately to strongly aversive across the four 
intensity levels, ranging from 0.18 (‘moderate’) to 0.37 (‘strong’, 

general Label Magnitude Scale (gLMS); Supplementary Table 1). 
Negative affect ratings increased with intensity (Fig. 2a) for mechani-
cal pain (t(54) = 7.68, P < 0.001), thermal pain (t(54) = 13.86, 
P < 0.001), aversive sounds (t(54) = 6.47, P < 0.001) and aversive 
images (t(54) = 11.42, P < 0.001). Stimulus types were comparably 
aversive, permitting analysis of variation in brain activity across 
types while approximately matching on (and statistically controlling 
for) reported negative affect, and individual differences in sensitivity 
were correlated across types (r = 0.26–0.68; Supplementary Table 2). 
Ratings for each stimulus level (averaged across trials) within partici-
pants were used as outcomes for brain model development.

Identifying common and stimulus-type-specific brain models. 
Negative affect models were developed using PLS-R on study 1 
data and were constrained to simultaneously predict common and 
stimulus-type-specific effects based on brain-wide patterns within 
gray matter (‘PLS-R for brain model development’). This produced 
five multivariate patterns: one for each of the four stimulus types and 
one for common negative affect. Models were tested using fivefold 
leave-whole-participant-out cross-validation. Thus, accuracy statis-
tics are based on models trained on other participants (‘Model evalu-
ation’) and additionally validated in independent studies (see below).

These models provided evidence for both common and 
stimulus-type-specific coding of negative affect. All five models 
were sensitive to their target stimuli, as evidenced by significant 
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Fig. 1 | Task design and main analyses. a, Multiple aversive experiences task. Four stimulus types (thermal and mechanical pain, aversive sounds and 
aversive images) at four preselected intensity levels for a total of 96 randomized stimuli over six fMRI runs; aversiveness (‘negative affect’) rated on a 
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associations between observed and predicted ratings (Fig. 2b and 
Supplementary Table 3). Below we report correlations, expressed 
as mean within-participant r ± standard error (s.e.), and the 
out-of-sample prediction root mean squared error (RMSE; rating 
scale ranged from 0 to 1) for each model and outcome37. The com-
mon model accurately predicted mechanical pain (r = 0.43 ± 0.07, 
P < 0.001, RMSE = 0.132), thermal pain (r = 0.66 ± 0.06, P = 0.001, 
RMSE = 0.192), aversive sounds (r = 0.31 ± 0.07, P < 0.001, 
RMSE = 0.176) and aversive images (r = 0.49 ± 0.06, P < 0.001, 
RMSE = 0.179). Some variation in correlation values likely reflects 
range differences across outcomes, but the RMSE values were similar.

Each type-specific model predicted negative affect ratings of 
the intended type: r = 0.25 ± 0.08, P = 0.004, RMSE = 0.156 for 
mechanical pain; r = 0.60 ± 0.06, P = 0.001, RMSE = 0.205 for ther-
mal pain; r = 0.38 ± 0.06, P < 0.001, RMSE = 0.185 for aversive 
sounds; and r = 0.64 ± 0.05, P = 0.001, RMSE = 0.172 for aversive 
images. Type-specific models were specific to target stimuli, as evi-
denced by poor cross-prediction of off-target ratings (Fig. 2b,c and 
Supplementary Table 3), which were not significantly different from 
chance, with two exceptions (Supplementary Table 3). Effect sizes 
were on average five times lower than for on-target predictions. All 
five brain models remained significant after controlling for session 
order (‘Study design’), age and sex, and these variables had little 

impact on ratings (Supplementary Table 4). The brain models also 
discriminated between the lowest and highest stimulus level (see 
Supplementary Fig. 2 for classification accuracy matrix across all 
stimulus intensity-level pairs).

Relative contributions of models to predicting ratings. Next, 
we asked how common and type-specific brain models combine 
to predict negative affect. We partitioned the variance explained 
in ratings into that: (a) unique to the common model, (b) unique 
to the specific model, and (c) shared across both models. Variance 
decomposition was computed via full and reduced multiple regres-
sion models38 on cross-validated model outputs for each individual 
participant (‘Variance decomposition analysis’) and then averaged 
across participants.

Negative affect ratings of all types were predicted by a mixture 
of common and stimulus-type-specific representations in approxi-
mately equal parts (mechanical: 33% common, 34% specific; ther-
mal: 31% common, 23% specific; auditory: 34% common, 29% 
specific; visual: 21% common, 32%, specific) and some variance 
shared across the common and specific models (mechanical, 10%; 
thermal, 32%; auditory, 5%; visual, 25%; Fig. 2c). Because negative 
affect was predicted by a mix of common and stimulus-type-specific 
representations, these results show that negative affective  
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Fig. 2 | Model evaluation and joint contributions to predicting negative affect. a, Ratings significantly scaled with stimulus intensity (N = 55 participants; 
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across participants for each stimulus type. Error bars reflect within-participant s.e.m. The common model, trained on all stimuli, significantly predicted 
ratings to each stimulus type. Stimulus-type-specific models, optimized for specificity by setting other stimulus types at 0 during training, significantly 
predicted ratings to target (color-matched) stimulus type, but not to off-target stimulus types. r, mean within-participant Pearson correlation between 
predicted and observed ratings; two-sided P values based on a 10,000 samples bootstrap test of within-participant r values. c, Cross-prediction of ratings 
across stimulus types tested by Pearson correlation between the predicted and the observed outcomes for each train–test stimulus pair; darker shading 
indicates a higher Pearson r value. d, For each stimulus type, the within-participant variance in outcome (ratings) explained by the predictors (common 
model, specific model) is partitioned between the predictors into unique and shared components by computing the full and reduced regression models: 
total r2, mean within-participant total variance explained by common and specific models, unique r2 for common model = total r2 − single variance for 
specific model (yellow slice), unique r2 for specific model = total r2 − single variance for common model; dark-brown slice, shared r2 = total r2 − unique r2 
specific − unique r2 common (light-brown slice).

NATure NeuroSCieNCe | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


Articles NATurE NEuroSCiENCE

experience is not completely reducible to a common dimension 
such as valence.

Core systems for multimodal and stimulus-type-specific nega-
tive affect. To identify important brain features, we interpret both 
model weights and model encoding maps (or ‘structure coeffi-
cients’39; Supplementary Fig. 3). Consistent model weights in boot-
strap tests identify important voxels contingent on other features in 
the multivariate model. Structure coefficients identify voxels indi-
vidually associated with each model’s output, mapping individual 
voxels to the overall multivariate model prediction39. The voxels sig-
nificant in both maps (that is, their conjunction) are the most con-
sistently associated with the target outcome, with or without other 
brain covariates, and can be interpreted as core regions contributing 
to the predictive model. For type-specific models, we calculated a 
three-way conjunction to additionally require that identified vox-
els correlate more strongly with model predictions for the target 
stimulus than for any other type. Thus, a core stimulus-type-specific 
(selective) system has voxels that reliably contribute to prediction, 
encode the respective model and are selective for the target model 
above all other models.

The core system for common negative affect included OFC, 
MPFC, MCC, aINS, vStr and amygdala (Fig. 3a and Supplementary 
Table 5). These regions are broadly associated with affect, moti-
vation and multisensory integration, and encode common prop-
erties across multiple negative affective stimuli in previous 
studies14–16,18,40,41. Some voxels in this system also contributed to 
stimulus-type-specific models, consistent with intermixed neural 
populations identified in animal studies2,42. The MCC, vStr and 
aINS also included thermal pain-selective voxels (Fig. 4), and the 
amygdala included visual negative affect-selective voxels.

Core stimulus-type-selective systems (Fig. 3b and Supplementary 
Table 6) largely mapped onto early sensory pathways cortices, with 
several exceptions. Bilateral primary somatosensory cortex (S1) 
was the only area selective for mechanical pain. Portions of right 
secondary somatosensory cortex (S2) and dorsoposterior insula 
(dpINS) were selective for thermal pain. Ventroposterior insula 
(vpINS) and bilateral auditory cortices (areas A1–A3) were selec-
tive for auditory negative affect. Bilateral visual cortices (areas V1–
V4) were selective for visual negative affect. These findings are in 
line with recent meta-analyses showing modality-specific process-
ing of aversive input in early sensory cortices18,40,41. Importantly, 
however, these areas were not only selectively activated by a par-
ticular stimulus type, but also selectively predicted negative affect 
ratings for one type.

An extended set of regions was selective for visual negative affect, 
including anterior occipitotemporal and parahippocampal areas, 
amygdala and mid-lateral OFC (Fig. 3b). In addition, some ‘sen-
sory’ thalamic and early sensory cortices also encoded the common 
model (Figs. 3a and 4), supporting an expanded role for tradition-
ally ‘sensory’ areas in processing of multimodal affective input27,43–45.

Individual model contributions to negative affect in regions of 
interest. To probe local contributions to each model, we examined 
model encoding in a set of a priori regions of interest (ROIs) pre-
viously linked to affective processes and sensory-specific regions 
(Methods and Supplementary Table 7). All ROIs contained vox-
els with significant structure coefficients in at least two models  
(Fig. 3c,d). Each multimodal ROI encoded the common and at 
least one stimulus-type-specific model; Fig. 3c). Sensory ROIs were 
largely stimulus-type specific, as shown in Fig. 3d, with some excep-
tions. Mechanical and thermal pain were encoded in S1 and S2/
dpINS cortices. S2/dpINS also encoded auditory negative affect, 
possibly reflecting their proximity to auditory cortices (Fig. 4 and 
Discussion). Auditory cortices (A1–A3) encoded auditory negative 
affect and thermal pain. Visual cortices (V1–V4) primarily encoded 

visual negative affect, but also auditory negative affect and pain. 
Each sensory cortex also contributed to encoding the common 
negative affect model.

For each region, we calculated the ratio of importance for com-
mon affect versus stimulus-type-specific negative affect, where 
importance was defined as the percentages of the ROI encoded 
by each of the common and predominant type-specific models. A 
negative correlation in the two importance scores (Fig. 3e) indi-
cated a trade-off between them. Early sensory ROIs were more type 
selective, with auditory regions (A1–A3) the most selective (that is, 
highest type-specific/common ratio; Fig. 3d). Visual cortices (V1–
V4) were also type selective. Somatosensory cortices (S1 and S2) 
and dpINS were more mixed, showing overlap with mechanical and 
thermal pain, auditory and common models.

Among multimodal affect/motivation-related regions, vMPFC, 
ventrolateral prefrontal cortex (vLPFC) and dorsomedial prefron-
tal cortex (dMPFC) showed the highest relative importance for the 
common model. The MCC and vStr were preferentially important 
for the common and thermal models. The amygdala was prefer-
entially important for the common and visual models. The aINS 
and vLPFC/OFC were more mixed, with a relatively low common/
type-specific ratio. Voxels in these regions encoded mechanical 
and thermal pain, auditory and common negative affect models. 
Overall, anatomical regions encoded distinct combinations of com-
mon and type-specific affect. No region encoded negative affect in a 
purely domain-general fashion.

Organization of regions into sensory and cortico-brainstem path-
ways. Selectivity in early sensory cortices (for example, V1 and A1; 
ref. 18) suggested that negative affect may be encoded along related 
ascending thalamocortical and brainstem sensory pathways as well. 
To test this, we examined model encoding within an expanded set of 
thalamic and brainstem regions (Fig. 4). These included: (1) supe-
rior colliculus (SC), pulvinar, and lateral geniculate nucleus (LGN), 
which project to V1 and mediate visual perception; (2) inferior col-
liculus (IC) and medial geniculate nucleus (MGN), which form an 
auditory pathway projecting to A1; (3) somatosensory/pain-related 
thalamocortical pathways including ventroposterior lateral (VPL) 
and intralaminar (IL) thalamic nuclei; and (4) midbrain rostroven-
tral medulla (RVM) and periaqueductal gray (PAG) and thalamic 
mediodorsal (MD) nucleus, which (along with IL) are thought to be 
related to multiple forms of negative affect.

Visual model encoding was indeed reflected in the SC and LGN, 
along with interconnected V1 and amygdala, indicating encoding 
of negative affect related to visual images in the classic LGN–V1 
and pulvinar–V1 thalamocortical pathways as well as the SC–pul-
vinar–amygdala subcortical visual pathways46,47. Likewise, audi-
tory negative affect was encoded in an RVM–PAG–IC–MGN–A1 
pathway46,48, with additional involvement of S2 and posterior insula 
(pINS) proximal to the auditory cortex. IC selectively encoded 
auditory negative affect, and SC selectively encoded visual negative 
affect.

Thermal and mechanical pain were encoded in differentiable 
pathways. Thermal pain was encoded in an RVM–PAG–midline 
thalamic (MD and IL) pathway connected to MCC and insula (aINS 
and mid-insula (mINS)) in the cortex and vStr in the forebrain49. 
Mechanical pain was more strongly related to an S2–mINS pathway 
(in addition to mechanical pain-specific portions of S1 described 
above). pINS also showed a fine-grained distinction, with dorsal 
pINS contributing to pain and ventral pINS contributing to audi-
tory negative affect25,43. We also observed a dorsoventral distinction 
in S1 and surrounding areas, with dorsal S1 selective for thermal 
pain and ventral S1 selective for mechanical pain (Fig. 4). These 
types of pain are often used interchangeably, although they behave 
differently in different animal strains50 and clinical populations (for 
example, ref. 51).
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Interestingly, common negative affect was encoded in tradition-
ally pain-related neural pathways, from brainstem (RVM–PAG) 
via thalamic (MD, IL and VPL) nuclei to somatosensory cortices 
and multimodal cortical and forebrain structures (for example, 
mINS, aINS and posterior midcingulate cortex (pMCC); Fig. 4). 
Some regions (MD, IL and PAG) play roles in multiple types of 
affective behavior52,53, whereas others are thought to be more spe-
cific to somatic processing (S2, VPL and RVM)49,54 but may reflect 
affect-related brain–body communication.

Unexpectedly, thermal pain was weakly encoded in RVM and 
PAG, which are traditionally pain related49, and strong encoding  

of visual negative affect in the auditory MGN. This could be due 
to current limitations of fMRI at this resolution (Discussion), 
or to complex roles of RVM and PAG in pain representation  
and modulation.

Prediction of negative affect ratings in new samples. We tested 
the replicability, robustness and generalizability of the models 
developed in study 1 by testing their sensitivity and specificity in 
predicting negative affect ratings in 401 new participants from dif-
ferent cohorts15,55 (studies 2–6; see Figs. 5 and 6 and Supplementary 
Table 8 for experimental designs and stimulus types). Each model 
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was applied only once to the dataset, without refitting or other-
wise altering the model (that is, no model degrees of freedom). 
Participants made avoidance ratings in study 2, as in study 1, and 
unpleasantness ratings in studies 3 and 4. Studies 5 and 6 tested sen-
sitivity and specificity to negative versus positive images and pain 
versus non-painful warmth, respectively.

Negative affect models developed in study 1 generalized across 
new samples: they significantly predicted negative affect ratings in 

most cases, and stimulus-type-specific models were largely sensitive 
and specific to their target stimulus types (Figs. 5 and 6).

The common model predicted ratings for all stimulus types: 
(a) mechanical pain ratings in study 2 (r = 0.34 ± 0.12, P = 0.006, 
classification accuracy for the highest versus lowest stimulus lev-
els = 72%, P = 0.02, Fig. 5a); (b) thermal pain ratings in study 3 
(r = 0.55 ± 0.10, P = 0.001, accuracy = 91%, P < 0.001, Fig. 5b); 
(c) aversive sound ratings in study 2 (r = 0.33 ± 0.09, P < 0.001,  
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accuracy = 78%, P = 0.002, Fig. 5a); and (d) aversive image ratings in 
study 4 (r = 0.32 ± 0.04, P < 0.001, Fig. 5c). The common model did 
not significantly predict aversive ‘knife on bottle’ sound ratings in 
study 3, however (r = 0.13 ± 0.13, P = 0.39, accuracy = 59%, P = 0.38, 
Fig. 5b; see also below).

Stimulus-type-specific models were sensitive and largely spe-
cific to ratings of target stimuli for mechanical pain in study 2 
(r = 0.66 ± 0.07, P < 0.001, accuracy = 91%, P < 0.001; Fig. 5a), for 
thermal pain in study 3 (r = 0.46 ± 0.11, P = 0.001, accuracy = 91%, 
P < 0.001; Fig. 5b) and for aversive images in study 4 (r = 0.42 ± 0.03, 
P < 0.001; Fig. 6c). However, the mechanical pain-specific model 
was also sensitive to ratings of off-target stimuli in study 3 (r = 0.40, 
P = 0.004 for thermal pain and r = 0.33, P = 0.006 for aversive 
sound) and study 4 (r = 0.12, P = 0.008 for aversive images; Fig. 5 
and Supplementary Table 9).

Study 2 included the inherently aversive ‘knife on bottle’ sound 
stimuli used in study 1, whereas study 3 included this sound and 

also emotionally charged ‘auditory vignettes’ from the International 
Affective Digitized Sounds whose aversiveness was driven mainly 
by contextual information (people crying, gunshots). The aversive 
auditory model significantly predicted ratings to ‘knife on bottle’ 
sounds in both study 2 (r = 0.44 ± 0.10, P = 0.003, accuracy 88%, 
P < 0.001; Fig. 5a) and study 3 (r = 0.42 ± 0.11, P = 0.001, accu-
racy 75%, P = 0.007, Fig. 5b). However, it did not predict ratings to 
context-driven emotional sounds in study 3 (r = −0.01, P = 0.92) nor 
did the common model (r = −0.07, P = 0.192; Fig. 5b). Thus, the audi-
tory negative affect model captured negative affect driven by intrinsic 
sound qualities rather than contextually driven emotional content.

Valence specificity and additional validation analyses. Our affect 
models may reflect factors that are not specific to negative valence, 
such as attention and salience56. The use of multiple aversive con-
trols for each stimulus type, as reported above (Fig. 2b,c), provides 
evidence that type-specific models are selective to a particular 
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type of negative affect. This rules out a general attention, arousal 
or salience explanation for the type-specific models, but does not 
address this issue for the common model.

We tested specificity to negative affect in another way, by testing 
whether the models predicted normative pleasantness ratings of pos-
itive stimuli. In study 1, neither the common nor visual type-specific 

models predicted normative pleasantness (mean within-participant 
r = −0.10, P = 0.30 for the common model and r = −0.12, P = 0.31 
for the visual model; Fig. 6a). Positive and negative stimuli from the 
International Affective Picture System (IAPS) were largely matched 
on normative arousal, excluding the possibility that negative images 
were simply more arousing. Additional cross-validated PLS-R models  

Study 5, n = 95; (a) negative images, (b) positive images 

Study 6, n = 59;  painful heat, non-painful warmth
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trained to predict normative ratings for negative and positive IAPS 
images (Supplementary Methods and Extended Data Fig. 1a) 
ruled out the possibility that pleasantness ratings might simply be 
poorly predicted by brain activity. These analyses revealed a dou-
ble dissociation in brain representations for negative and positive 
affect (see pattern responses in Extended Data Fig. 1b, and PLS-R 
weight and model encoding maps in Extended Data Fig. 1c). The 
negative-specific model predicted normative aversiveness ratings 
(r = 0.49, P = 0.001), but not normative pleasantness ratings (nega-
tive predicted slope, r = −0.41), and the positive-specific model pre-
dicted pleasantness ratings (r = 0.75, P = 0.002), but not aversiveness 
ratings (negative predicted slope, r = −0.11). An additional ‘arousal’ 
model trained to predict both positive and negative ratings com-
bined predicted rating intensity for both types (r = 0.58, P = 0.001 
for negative images and r = 0.69, P = 0.001 for positive images). This 
analysis shows that normative pleasantness is encoded in brain pat-
terns distinct from our negative affect models.

We further tested the negative affect models’ specificity for 
negative valence in two additional independent datasets. In study 5 
(Fig. 6b), aversive visual models (common, specific) showed a sig-
nificant pattern response to aversive IAPS images (Cohen’s d = 0.86, 
P < 0.001 for the common model and d = 1.51, P < 0.001 for the 
aversive visual-specific model), showing model sensitivity. Neither 
the common nor visual-specific model responded to positive IAPS 
images (d = 0.07, P = 0.52 and d = 0.06, P = 0.56, respectively), show-
ing valence specificity. Similarly, in study 6, thermal pain models 
(common, thermal-specific) responded significantly to painful heat 
(d = 1.03, P < 0.001 and d = 1.06, P < 0.001, respectively), showing 
model sensitivity. Neither model responded to non-painful warm 
stimuli (d = −0.19, P = 0.15 and d = 0.11, P = 0.38, respectively), 
showing valence specificity. Other stimulus-type-specific models 
did not respond to positive images or warm stimuli, as expected. 
Thus, the brain models in study 1 were specific to negatively 
valenced stimuli in these test datasets and not sensitive to positive 
pictures. However, other types of appetitive stimuli may activate 
similar regions and patterns to our models (Extended Data Fig. 1), 
and more comprehensive tests of specificity across appetitive tasks 
are needed (Discussion).

Summary of predictive performance in independent samples. 
Figure 6c summarizes the models’ performance across studies 
1b–6. Across 55 model generalization tests (5 models × 11 tests), the 
models’ decisions were correct (that is, true positives on-target and 
true negatives off-target) in 49 cases. Fifty of these tests were per-
formed on independent study cohorts (studies 2–6). We found two 
false-negative cases (failures of sensitivity) and three false-positive 
cases (failures of specificity), as reported above. Together, the mod-
els developed in study 1 were sensitive to negative affect and specific 
to negative versus positive affect, providing preliminary evidence 
for generalizability that should be tested on a wider array of aver-
sive and appetitive tasks in future studies. Such tests should care-
fully consider whether conditions tested are positive or negative (for 
example, affective responses to sexual images are complex57).

Discussion
Understanding how human affect is encoded in the brain is a central 
neuroscientific question. Psychological theories3–5 and frameworks 
like the NIH Research Domain Criteria11 have focused on general-
ized negative valence as a cross-modal construct, and the existence 
of generalized ‘negative affect’ in the brain is widely assumed. On the 
other hand, different affective stimuli activate differentiable neural 
populations and pathways in animal studies28,30,33,58 and many clini-
cal effects are found only with specific aversive stimulus types (for 
example, ref. 51). Studies have thus provided evidence for both com-
mon and stimulus-type-specific negative affect. However, by focus-
ing on these accounts separately—and typically with only one or 

two stimulus types tested in the same individuals—inferences about 
the nature of affect coding in the human brain have been limited.

Here we combined a multimodal experimental paradigm with a 
predictive modeling approach designed to uncover whether brain 
representations of negative affect are generalizable across types, spe-
cific to stimulus types, or a combination of both. In study 1, we jointly 
estimated common (general) and stimulus-type-specific representa-
tions of negative affect (subjective ratings) across four types of aver-
sive stimuli. The findings indicate that negative affect is encoded 
in a combination of general (common) and stimulus-type-specific 
representations. Studies 2–6 provided further evidence that these 
representations are generalizable across individuals and cohorts and 
can be applied separately or jointly to predict negative affect in new 
studies. Applications to new studies include (a) characterizing neu-
ral differences related to disorders and subgroups, (b) predicting or 
monitoring the progression of mental health disorders over time, 
and (c) providing targets for behavioral, pharmacological and neu-
ral interventions. Further validation will help refine the use cases 
and boundary conditions for such applications.

Model encoding maps revealed several principles underlying the 
architecture of negative affect. First, some voxels encoded a general 
aversion signal across stimulus types, and this common negative 
affect representation was distributed across cortical, forebrain and 
brainstem regions. Extending recent work on cross-modal affect16,59, 
the common model was related to a set of ‘core’ affect areas, including 
midline aMCC, thalamus, brainstem, cerebellum, amygdala and lat-
eral OFC. Second, affect was represented in a stimulus-type-specific 
manner in sensory thalamocortical and corticobulbar pathways. 
Third, the models predicted the intensity of negative affect and did 
not respond to positive stimuli, at least among tasks studied here. 
The models therefore probably do not code for arousal, salience, or 
other unsigned processes related to affective intensity (for example, 
associability)56,60. Their response patterns, and the double dissocia-
tion observed between negative and positive affective images, are 
also inconsistent with bipolar (single-dimension) encoding but con-
sistent with the idea that negative and positive affect are encoded 
in separable systems1,18,41. Fourth, several key affect-related regions 
(for example, the amygdala) contained overlapping populations of 
voxels that contributed to multiple types of negative affect. This pro-
vides a substrate for common and type-specific valence systems to 
interact within the same anatomical regions.

A commonly held perspective is that negative affect is encoded 
chiefly in multimodal forebrain regions such as OFC/vMPFC and 
amygdala16,59,61. However, we found that negative affect ratings were 
also linearly encoded by activity in early sensory cortices, with pINS 
and somatosensory cortex predicting pain, auditory cortex predict-
ing auditory negative affect and visual cortex predicting visual 
negative affect. These findings align with previous findings that 
affective associations with visual stimuli are embedded in the visual 
cortex27,45, and, more broadly, that category-specific affective infor-
mation is embedded in early sensory areas18,43,44,62. Our results, how-
ever, extend beyond classification of stimulus types to suggest that 
subjective ratings of stimuli are also encoded in sensory cortices.

The co-localization of different types of affective representations 
also provides a basis for multimodal integration and interactions 
(for example, between pain and emotion63,64). Although sensory 
pathways were largely modality specific, some (for example, S1, S2, 
pINS, SC, IC and LGN) also encoded general negative affect, sug-
gesting integrative processing in these areas. In other areas, includ-
ing the amygdala and all multimodal cortical regions tested, distinct 
stimulus-specific representations were encoded in close anatomical 
proximity to each other.

The pattern-based approach we used, which shows promise for 
disentangling general and stimulus-type-specific signals, may help 
address discrepant findings in previous studies. For example, some 
studies have reported that the amygdala encodes nonspecific arousal 
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or salience-related signals (or ‘unsigned valence’; for example,  
refs. 56,60), but others have shown valence-specific effects in the 
amygdala matching for arousal65. Here, the amygdala contributed 
to both general and vision-specific (but not auditory or somato-
sensory) negative affect, but an overlapping population of voxels 
encoded an ‘arousal’ signal (Extended Data Fig. 1d,e). Overlapping 
patterns of fMRI brain response (with different population vec-
tors) could, in principle, separately predict negative affect, positive 
affect16,66,67, and general ‘arousal’. Positive affect might be processed 
in some of the regions we identified, including vStr, albeit in sepa-
rable neural populations (Extended Data Fig. 1d,e). This approach 
can be extended to other tasks as well. For example, vStr might 
encode more rewarding (appetitive) positive stimuli1,68 not investi-
gated in the present work.

Brain measures that track distinct types of affect may be impor-
tant for identifying disorder-relevant affective brain responses. For 
example, we found a double dissociation in mechanical and thermal 
pain encoding in S1 and pINS/S2, respectively. Responses to ther-
mal, mechanical and chemical pain are relatively uncorrelated (for 
example, ref. 51) and clinical hypersensitivity is often stimulus-type 
specific69. Some disorders are characterized by increased sensitiv-
ity to mechanical pain70,71 and others to thermal pain72. We also 
identified dissociable pINS/S2 regions encoding pain versus audi-
tory affect, and a double dissociation between auditory and visual 
affect in the IC and SC, respectively. Our approach thus identifies 
dissociations that have been difficult to separate using standard  
fMRI methods.

Finally, our findings provide evidence that accounting for 
multiple common and stimulus-type-specific representations is 
important for developing accurate predictive models. Accurate pre-
dictions of subjective affective experience required jointly consider-
ing common and type-specific measures in all cases we tested. This 
principle is consistent with a growing literature showing that even 
basic affective judgments are complex processes that involve coor-
dination of multiple brain systems. Future studies must consider a 
range of contextual factors and individual differences, which likely 
influence the nature of affect representations and how they combine 
to create subjective experience. Nevertheless, present findings dem-
onstrate a substantial degree of consistency across individuals and 
studies, and establish a baseline for future context-dependent and 
subgroup-dependent models.

This paper has several limitations. First, we only included one 
type of positive stimuli (visual images) and thus, our valence speci-
ficity tests are largely limited to visual stimuli, although we provide 
preliminary evidence for valence specificity for thermal stimuli. 
Second, not all models performed equally well when tested in new 
samples; the mechanical pain-specific model in particular might 
not generalize as well as other models. Third, conventional 3T fMRI 
cannot be precisely localized to midbrain and brainstem nuclei. 
However, we and others have found reasonable localization in these 
areas at 3T, for example, PAG, RVM, SC, IC and other nuclei53,73, 
in some cases validated with high resolution (~1 mm) 7T fMRI46,53.

In conclusion, we show that negative affect is encoded in the 
brain in multiple distributed representations, some generalizable 
across affective stimulus types and others specific to negative affect 
elicited by a particular stimulus type. Negative affect is embedded 
in sensory pathways, and integrative regions represent distinct com-
binations of negative affect types. The resulting models provide a 
set of measures that can serve to understand disorders, track the 
progression of disorders and treatments over time, and serve as 
targets for interventions. They also lead to further basic and trans-
lational research questions. One area for future development con-
cerns how common and distinct representations are integrated, how 
‘cross-talk’ across sensory modalities occurs and how ‘cross-talk’ 
may be enhanced in disorders, helping to explain, for example, pain 
hypersensitivity after emotional trauma. Another area concerns 

hierarchical coding, including whether common and type-specific 
affective codes are parallel or hierarchical, and how context-based 
predictive signals are integrated info affect representations.
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Methods
Data from six studies were used in this paper. Study 1 was the primary study used 
for brain model development and all main analyses. Studies 2, 3 and 4, 5a and 
6a contained different aversive stimuli in novel participants and were used for 
prospective validation of brain models developed in study 1. Study 1b contained 
pleasant visual stimuli tested in the same participants as study 1 and was used 
to test whether the aversive brain models are sensitive to other attentionally 
demanding, salient stimuli (that is, positive images). Studies 5b and 6b contained 
positive pictures and non-painful warm stimuli and were used for additional 
valence specificity tests. Experimental parameters for each study are listed in 
Supplementary Table 8.

Participants. Study 1 included 55 adult participants (mean ± s.d. age: 24.9 ± 6.8 
years; 31 males, 24 females; 9 left-handed; 47 white and 8 non-white (1 Hispanic, 
5 Asian, 1 Black and 1 American Indian)). All participants were healthy, with 
normal or corrected to normal vision and normal hearing, and with no history 
of psychiatric, physiological or pain disorders and neurological conditions, no 
current pain symptoms, and no MRI contraindications. Eligibility was assessed 
with a general health questionnaire, a pain safety screening form and an MRI safety 
screening form. Participants were recruited from the Boulder/Denver Metro Area. 
The institutional review board of the University of Colorado Boulder approved the 
study, and all participants provided written consent. Participants were compensated 
at a rate of $12 per hour for behavioral sessions (that is, tasks outside the fMRI 
scanner) and $24 per hour for fMRI sessions. Data collection and analysis were not 
performed blind to the conditions of the experiments. No statistical methods were 
used to predetermine sample sizes, but our sample sizes are similar to those reported 
in previous publications23–25,74. No participants were excluded from the analysis.

Study design. The study 1 dataset included in the current paper is part of a larger 
study, in which participants completed two fMRI sessions in a counterbalanced 
order. In each session, we administered the ‘multimodal aversiveness task’. In the 
‘experience’ session, presented here, participants were instructed to ‘experience 
aversive stimuli as they come’. In the ‘regulate’ session (not presented here), 
participants were instructed to downregulate aversive stimuli using a cognitive 
self-regulation strategy. Physiological recordings were collected throughout each 
session (not presented here).

fMRI task design. The ‘multimodal aversive experience task’ was developed 
for this study to test brain responses to multiple instances of negative affect in 
the same individuals (Fig. 1a). The task comprised a series of aversive stimuli of 
different types (painful pressure, painful heat, aversive sounds, aversive images) 
and a pleasant (positive) stimulus type (pleasant images). In total, participants 
received 96 aversive stimuli (4 stimulus types × 4 intensities × 6 runs presented in 
random order) and 24 pleasant stimuli (4 intensities × 6 runs) over six fMRI runs 
and rated their experience after each stimulus (including the positive stimuli) using 
a uniform rating scale, detailed below.

Negative affect rating. We obtained rating scores of negative affect on the 
same scale across different stimulus types. Participants rated negative affect 
(‘aversiveness’) in terms of avoidance (‘how much do you want to avoid this 
experience in the future?’) on a gLMS scale. The gLMS was chosen over the 
more common visual analog scale as it might be better suited for cross-modal 
comparisons and for capturing subjective variance in the high-intensity stimulus 
range75. The gLMS was anchored at ‘not at all’ (0) to ‘most’ (1), with intermediate 
labels spaced quasi-logarithmically (‘a little bit’ (0.061), ‘moderately’ (0.172), 
‘strongly’ (0.354) and ‘very strongly’ (0.533). Before to the fMRI session, 
participants were instructed in the meaning of scale labels: ‘not at all’ = I feel no 
need to avoid this experience, ‘a little bit’ = I would put a little effort into avoiding 
this experience, ‘moderately’ = I would prefer to avoid this experience in the future, 
‘strongly’ = I strongly want to avoid this experience in the future, ‘very strongly’ = I 
very much want to avoid this experience and ‘most’ = I never want to experience 
this again in my life. During the fMRI experiment, the intermediate labels were 
removed to minimize clustering of ratings around the labels76.

Calibration of pain stimuli. Before the fMRI experiment, all participants 
underwent a short pain calibration session to assure normal pain sensitivity. 
Participants experienced different levels of thermal and pressure pain stimuli in 
a random order (thermal: between 43 and 49 °C, pressure: between 4 and 7 kg/
cm2, maximum duration of 10 s). The highest stimulus level was chosen based 
on previous studies as tolerable yet painful for most participants. All participants 
included in the study were able to tolerate all stimuli.

Aversive stimuli. Mechanical pain stimuli were administered using an in-house 
pressure pain device. The pressure pain device is an MRI-safe device with dynamic 
pressure delivery controlled by LabView (National Instruments). Four stimulus 
levels were delivered to the left thumbnail for 6 s each (level 1: 4 kg/cm2; level 2: 
5 kg/cm2; level 3: 6 kg/cm2; level 4: 7 kg/cm2).

Thermal pain stimuli were administered using an ATS Pathway System 
(Medoc) with a 16-mm Peltier contact thermode (that is, hot plate). Four stimulus 

intensity levels were delivered to the thenar eminence of the left hand (level 1: 
45 °C; level 2: 46 °C; level 3: 47 °C; level 4: 48 °C) and each stimulus lasted 10 s 
(1.5–2-s ramp-up, 1.5–2-s ramp-down, 6–7 s at target temperature).

Aversive sound was administered using MRI-compatible headphones. We used 
the sound of a knife scraping on a bottle (sound file retrieved from YouTube), 
which is a reliable aversive auditory stimulus77,78. Four stimulus intensity levels were 
delivered at 2,000 Hz for 6 s each (level 1: level 4 minus 8 dB; level 2: level 4 minus 
4 dB; level 3: level 4 minus 1 dB; level 4: original YouTube sound file).

Aversive images were presented on the MRI screen and included normed 
images from the IAPS database79. To induce four stimulus intensity levels, we 
selected four groups of seven images each in a two-step process: (1) preliminary 
selection based on normed aversiveness ratings (averaged across male and female 
raters) available in the IAPS database, and (2) final selection based on ratings by 
N = 10 laboratory members (5 males, 5 females) in response to ‘how aversive is 
this image? 1–100’. Selected images included photographs of animals (7), bodily 
illness and injury (12), industrial and human waste (9). Four stimulus levels were 
delivered to participants for 6 s each.

fMRI data acquisition and preprocessing. Whole-brain fMRI data were acquired 
on a 3T Siemens MAGNETOM Prisma MRI scanner at the Intermountain 
Neuroimaging Consortium facility at the University of Colorado, Boulder. 
Structural images were acquired using high-resolution T1 spoiled gradient 
recall images and were used for anatomical localization and warping to the 
standard Montreal Neurological Institute (MNI) space only. Functional images 
were acquired with a multiband EPI sequence (repetition time = 460 ms, echo 
time = 27.2 ms, field of view = 220 mm, multiband acceleration factor = 8, flip 
angle = 44°, 64 × 64 matrix, 2.7 × 2.7 × 2.7 mm voxels, 56 interleaved ascending 
slices, phase encoding posterior » anterior). In total, six runs of 7.17 min in duration 
( = 934 measurements) were acquired. Stimulus presentation and behavioral data 
acquisition were controlled using Psychtoolbox (MATLAB, MathWorks).

fMRI data were preprocessed using an automated pipeline based on AFNI, 
FSL and SPM5, and implemented by the Mind Research Network. Briefly, the 
preprocessing steps included: distortion correction using FSL’s top-up tool (https://
fsl.fmrib.ox.ac.uk/fsl/), motion correction (affine alignment of first EPI volume 
(reference image) to T1, followed by affine alignment of all EPI volumes to the 
reference image and estimation of the motion parameter file (sepi_vr_motion.1D, 
AFNI; https://afni.nimh.nih.gov/), spatial normalization via the participant’s T1 
image (T1 normalization to MNI space (nonlinear transform), normalization of 
EPI image to MNI space (3dNWarpApply, AFNI; https://afni.nimh.nih.gov/), 
interpolation to 2 × 2 × 2 mm3 voxels and smoothing with a 6-mm FWHM kernel 
(SPM 8; https://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Spatial smoothing 
improves interindividual functional alignment without impairing the sensitivity of 
multivariate pattern analyses80. Before first-level analysis, in each run we removed 
the first 15 volumes of the fMRI data to allow for image intensity stabilization and 
identified severe global motion outliers (spikes) in the data. Spikes were defined 
as time points in the data with either the absolute global signal intensity or the 
Mahalanobis distance across slice-specific global means and spatial standard 
deviations exceeding ten median absolute deviations.

Behavioral data analysis. Behavioral data were analyzed using ‘glmfit_
multilevel.m’, a multilevel generalized linear model implemented in custom 
MATLAB (2019a, MathWorks) code available from the authors’ website  
(https://github.com/canlab/CanlabCore/). For each stimulus modality (mechanical, 
thermal, auditory and visual), the outcome variable was the average rating for 
each stimulus level. The within-participant predictor at the first-level model 
was stimulus intensity. Data distribution was assumed to be normal but was not 
formally tested.

fMRI analysis. fMRI data were analyzed using SPM12 (http://www.fil.ion.ucl.
ac.uk/spm/) and custom MATLAB (2019a, MathWorks) code available from the 
authors’ website (https://github.com/canlab/CanlabCore/). A univariate general 
linear model (GLM) was used to create images for the prediction analyses. 
Data distribution was assumed to be normal but was not formally tested. The 
participant-level GLM analyses were conducted in SPM12. The six runs of the 
fMRI task were concatenated for each participant. Boxcar regressors, convolved 
with the canonical hemodynamic response function, were constructed to model 
the 6–10-s stimulation and 4–7-s rating periods. The fixation cross epoch was 
used as an implicit baseline. A high-pass filter of 180 s was applied. Nuisance 
variables included: (a) ‘dummy’ regressors coding for each run (intercept for 
each run); (b) linear drift over time within each run; (c) the six estimated head 
movement parameters (x, y, z, roll, pitch and yaw), their mean-centered squares, 
their derivatives, and squared derivative for each run (total = 24 columns); 
and (d) motion outliers (spikes). Contrasts of interest (beta images) included 
stimulation periods averaged across six trials for each stimulus intensity (each 
against implicit baseline). The resulting beta maps computed for each stimulus 
level of each aversive stimulus type were used for brain model development 
(study 1). Beta maps computed for each stimulus level of the pleasant (positive) 
stimulus were used for brain model development in supplementary analyses 
(Supplementary Information).
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PLS-R for brain model development. Statistical approach. In study 1, we 
developed common and stimulus-type-specific predictive models of aversiveness 
ratings from brain activity across the four stimulus types using PLS-R35. PLS-R 
estimates a set of latent brain components (voxel-wise spatial maps) and a 
set of latent negative affect rating factors that are optimized to be maximally 
intercorrelated (that is, maximal variance in ratings explained by brain patterns). 
Compared to standard predictive brain models that typically characterize a single 
outcome at a time, PLS-R jointly estimates multiple solutions (that is, separate 
brain patterns for common and stimulus-type-specific outcomes) simultaneously, 
which is why it is capable of predicting multiple (correlated) stimulus types, as 
is the case with our data. The predictors (brain activity) are stored in the input 
matrix X and the outcome variables (ratings) are stored in the input matrix Y. 
By an iterative application of a singular value decomposition algorithm, which 
factorizes (decomposes) the cross-product matrix of the two input matrices, PLS-R 
finds latent variables, also called component scores, that model X (for example, 
brain activity) and simultaneously predict Y (for example, ratings). Each run of the 
singular value decomposition algorithm produces orthogonal latent variables and 
corresponding regression weights for predictions. By estimating different latent 
sources, PLS-R can provide improved estimates of common and specific patterns 
(versus single-outcome models such as PCR), but these are not necessarily fully 
independent of each other.

Implementation. PLS-R was conducted using ‘plsregress.m’ in MATLAB (version 
R2019b). Predictors (X) constituted 880 whole-brain activation maps associated 
with participants (55) x stimulus intensity level (4) x stimulus type (4), aggregated 
into an images x voxels matrix (stacked across participants), and split into training 
and test sets using fivefold blocked cross-validation (leaving out all images 
associated with test-set participants together). The activation maps were derived 
via univariate GLM analysis in which we modeled stimulation periods against 
implicit baseline and averaged across trials of each stimulus level of each stimulus 
type to obtain 16 contrast images for each participant. We constructed the outcome 
(Y) matrix to include negative affect ratings across all stimulus types (Y1) as well 
as stimulus-type-specific negative affect (Y2 – Y5, ratings for each stimulus type 
separately, with values of 0 for other stimulus types). By setting the Y value of 
other stimulus types to 0 we constrained each pattern to be stimulus-type specific. 
The linear combination of latent brain factors that explains Y1 reflects a common 
model of negative affect across stimulus types. Likewise, brain patterns predictive 
of Y2 – Y5 are models optimized to be selective to mechanical pain, thermal pain, 
aversive sounds and aversive images. Each model was then projected into a single 
predictive spatial map.

To estimate their predictive accuracy, and specificity for the target outcome, 
and generalization to new individual participants, these patterns were applied to 
fMRI activation maps obtained from new participants in cross-validation test sets 
(fivefold; leaving out all data for each test participant) and prospectively applied 
to independent studies (N = 247; see ‘Validation in independent datasets’ below). 
Model (pattern) responses were calculated using the dot product of each pattern 
weight map with the univariate GLM-derived fMRI activation map for each 
participant for each stimulus level. Weight maps applied to study 1 and study 1b 
were based on data from out-of-sample individuals (cross-validated estimates), and 
the final pattern weights applied to studies 2–6 were based on the full study sample 
(full samples estimates).

Model evaluation. To evaluate the models’ performance, we assessed in each 
participant the RMSE for each model’s predictions of its target outcome (that 
is, four average ratings per stimulus type) and the ability to significantly predict 
increasing negative affect within a participant. To provide an interpretable effect 
size metric, we estimated in each participant the Pearson correlation (r) between 
observed and cross-validated predicted ratings and tested whether the output of 
one model predicted the specific type of negative affect it was trained to predict 
(sensitivity) and not other types (specificity).

Classification between stimulus levels. For each brain model, we computed the 
classification accuracy between each pair of stimulus intensity levels (1 versus 2, 2 
versus 3, 3 versus 4, 1 versus 3, 2 versus 4 and 1 versus 4) from receiver operating 
characteristic curves using forced-choice classification. Forced-choice classification 
uses the maximum value of a relative comparison within a participant and is therefore 
‘threshold free’. P values were calculated using a two-sided independent binomial test.

Cross-prediction. To test how well each PLS-R brain pattern predicted other 
stimulus types, we used a cross-prediction procedure on cross-validated estimates. 
In this procedure, a Pearson correlation was calculated for each participant 
separately between the predicted and the observed outcomes (that is, negative affect 
ratings) for each stimulus type. The mean within-participant correlation coefficient 
for each train–test stimulus pair is visualized in a cross-correlation matrix.

Variance decomposition analysis. For each stimulus type separately, full and 
reduced regression models (commonality analysis, implemented in R38) were used 
in each participant to partition the variance in outcome (ratings) explained by the 
predictors (common model, specific model) into unique and shared components. 

First, total r2 was defined as the mean total variance explained by common and 
specific models in a multiple regression. The unique r2 for the common model 
(UVC) was computed as: total r2 − single variance for the specific model, whereas 
unique r2 for the specific model (UVS) was computed as: total r2 − single variance 
for the common model. Shared variance between common and specific models 
was computed as: total r2 − UVS − UVC. Proportions of variance explained were 
computed on cross-validated model outputs.

Identifying core systems involved in negative affect. General approach. Core 
regions for multimodal (common) negative affect processes were defined as having 
voxels that reliably contribute to model prediction (that is, model weights) and 
are related to model predictions in an interpretable way (that is, model encoding 
voxels where the prediction correlates with fMRI activation). Core regions 
for stimulus-type-specific processes were defined as above, with an additional 
‘type-selectivity filter’ applied to identify the most important regions. Thus, a core 
stimulus type-specific system was defined as having voxels that reliably contribute 
to prediction, encode the model and are selective for this model above all other 
models (3-way conjunction).

Step 1: model weight maps. To determine which brain areas made reliable 
contributions to the prediction and to threshold voxel weights for interpretation 
and display, we constructed 10,000 bootstrap samples (with replacement) 
consisting of paired brain and outcome data and performed PLS-R on each. The 
z-scores at each voxel were estimated based on the mean and standard error of 
the bootstrap distributions, and the statistical map was thresholded based on the 
corresponding P values. The maps were thresholded voxel-wise at q < 0.05 (FDR 
corrected)81. Uncorrected maps thresholded at t > 3 were used for display purposes 
in Supplementary Fig. 3a.

Step 2: model encoding maps. Model encoding (‘structure coefficient’) maps 
were computed for each participant by regressing the PLS-R model predictions 
on voxel-wise fMRI activation maps (four maps per person for each condition, 
corresponding to averages for each stimulus level). Structure coefficients identify 
voxels individually associated with each model’s output, mapping individual voxels 
to the overall multivariate model prediction39,82–84. The analysis was performed 
using a standard summary statistics-based mixed-effects GLM85, with robust 
regression at the second level, thresholded at FDR q < 0.05 corrected for multiple 
comparisons. Uncorrected maps thresholded at t > 3 were used for display 
purposes in Supplementary Fig. 3b.

Step 3: core system. The core system map for each model was derived via a 
conjunction of model weight maps thresholded at FDR q < 0.05 created in 
step 1 and model encoding maps thresholded at FDR q < 0.05 created in step 2 
(Supplementary Fig. 4a). The conjunction was restricted to preserve positive values.

Step 4a: type-selective model encoding maps. Voxels where model encoding values 
were significantly greater in one model than in any of the other four models (that 
is, type-selective voxels) were calculated for each participant as a supremum 
statistic image for the target model encoding map minus the maximum of the 
four remaining model encoding maps (Supplementary Fig. 4b). A second-level 
robust t-test, thresholded at FDR q < 0.05 corrected for multiple comparisons and 
preserving positive statistics only, identified regions selective for the respective 
model on participant group level.

Step 4b: core stimulus type-specific systems. Core stimulus-type-specific systems 
were derived via conjunction of the core system maps thresholded at FDR q < 0.05 
created in step 3 and the type-selective encoding maps thresholded at FDR q < 0.05 
created in step 4a.

Spatial similarity between model encoding maps and a priori regions of 
interest. River plots were created to depict spatial similarity between model 
encoding maps and a set of anatomical parcellations (ROIs), documented in 
previous neuroimaging studies as regions showing preferential activation to 
somatic pain stimuli, aversive auditory and aversive visual stimuli or regions 
showing activation to aversive stimuli across stimulus types (meta-analyses in  
refs. 18,41,62 and confirmed using Neurosynth in N = 238 fMRI studies with the 
search term ‘aversive’). Spatial similarity was calculated as cosine similarity 
between the ROI and the gray matter masked model encoding group map 
thresholded at q < 0.05 FDR and retaining positive values for interpretation.

Regional model importance scores. The common/type-specific ratio was derived 
for each ROI separately from model encoding values. The common model 
importance score was defined as the relative percentage of the ROI encoded by 
the common model. The type-specific model importance score was defined as the 
percentage of ROI encoded by the predominant specific model (that is, the model 
encoded by the maximum number of voxels).

Testing model-selectivity along afferent pathways. To test the relative 
contribution of each model to negative affect representation in selected ROIs 
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along the afferent processing pathways86, we extracted from each anatomically 
defined ROI and for each model separately the mean structure coefficients across 
participants. Significance of each model was tested using a one-sample t-test.

Validation in independent datasets. We tested whether brain models derived 
in study 1 (N = 55) could predict negative affect ratings in new individuals 
by applying PLS-R-derived brain patterns to three independent test datasets 
(study 2, N = 32; study 3, N = 32; study 3, N = 183; see Supplementary Table 8 
for sample characteristics and study design). Pattern response was estimated for 
each test participant in each test condition by computing the dot product of each 
PLS-R-derived full-sample pattern with the participant’s brain activation map, 
yielding a single scalar value. We estimated the sensitivity and specificity of each 
stimulus-type-specific pattern by testing whether the pattern responds significantly 
to the increasing level of self-reported negative affect for the respective (target) 
stimulus type (sensitivity to change in behavior; significant positive response 
with a positive slope) but has a nonsignificant response to other types of stimuli 
(specificity; nonsignificant or negative response or negative slope). For the 
common model, we tested whether the pattern responds significantly to the 
increasing level of self-reported negative affect across different aversive stimulus 
types. As in our main analyses, we calculated the mean within-participant Pearson 
correlation coefficient and the RMSE between the observed and predicted ratings 
as measures of model performance.

Valence specificity test and additional validation analyses. First, we tested 
the common and stimulus-type-specific patterns derived in study 1 on a set of 
pleasant visual stimuli collected in the same participants (labeled as study 1b; 
Supplementary Table 8). Pattern response was estimated as explained above. We 
used the cross-validated PLS-R pattern—testing in the same participants—to 
compute the dot product with each participant’s brain activation map.

Second, we tested the PLS-R patterns derived in study 1 on two additional 
datasets, study 5 (N = 95 participants, fMRI brain responses to negative and 
positive images; Supplementary Table 8) and study 6 (N = 59; fMRI brain responses 
to painful and non-painful thermal stimulation; Supplementary Table 8). Pattern 
response was estimated as explained above. We used the full-sample PLS-R pattern 
to compute the dot product with each participant’s brain activation map.

Third, we summarized the performance of PLS-R patterns derived in 
study 1 across all tested datasets (studies 1b–6b) in a single matrix showing 
(1) true-positive responses (significant positive pattern response for on-target 
stimuli) and true-negative responses (nonsignificant or negative pattern response 
for off-target stimuli) in green; (2) false-positive responses (significant pattern 
response for off-target stimuli) in yellow; and (3) false-negative responses 
(nonsignificant or negative pattern response for on-target stimuli) in blue.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Brain patterns generated and analyzed during the current study, as well as source 
data for figures are freely available via . The dataset used in study 6 is available at 
https://github.com/cocoanlab/interpret_ml_neuroimaging/.

Code availability
Code for analysis and for generating figures is openly shared at https://github.
com/canlab/2021_Ceko_MPA2_Aversive/. Analyses reported in this paper were 
performed using code release v1.0.1 (https://doi.org/10.5281/zenodo.6452244).
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Extended Data Fig. 1 | PLS-r models trained to predict normative ratings to negative (aversive) and positive (pleasant) iAPS images. (a) PLS-R 
procedure to estimate brain patterns for ‘arousal’ (common across stimuli) and for stimulus type-specific outcomes (IAPS norm ratings) simultaneously 
(b) Behavior plots. Left: normative ratings shown for each individual stimulus (that is, IAPS image); original IAPS scales (1–9 scales for Valence (higher 
score = less negative / more positive; 0 is neutral) and Arousal (higher score = more arousing). right: norm ratings averaged per bin (‘stimulus 
intensity level’, used for PLS-R training) and shown on a 0–4 split scale (higher score = more negative / more positive; 0 is neutral); Pattern response 
plots. Relationship between observed and predicted ratings. Circles reflect mean values across participants for each stimulus type, error bars reflect 
within-participant SEM. ‘Arousal’ model (panel 1), trained on all stimuli, significantly predicted ratings across stimulus types. Stimulus type-specific 
models (panels 2–3) significantly predicted ratings to target (color-matched), but not off-target stimulus type. r, mean within-participant Pearson 
correlation between predicted and observed ratings; two-sided P-values based on a 10,000 samples bootstrap test of within-participant r values.  
(c) Left: PLS-R model weight maps showing which brain areas make a reliable contribution to each model’s prediction (based on bootstrapping with 10,000 
samples and displayed here at t > 3, retaining positive values). right: Model encoding maps showing where in the brain voxel-wise activity correlates with 
PLS model outcomes, corrected for multiple comparisons using q < 0.05 FDR and thresholded at t > 3, retaining positive values. (d) Violin plots showing 
average BOLD response per stimulus intensity (x-axis) in bilateral ventral striatum (vStr) and amygdala ROIs (Supplementary Table 7), * p = 0.047,  
** p = 0.002, * p < 0.001 (left panels); Mean structure coefficient values for each model, averaged across in-ROI voxels across both hemispheres,  
* p < 0.001, only p-values associated with positive t-values are marked and interpreted, each dot is a participant (right panels); one-sample t-test on  
n = 55 participants, treating participant as random effect, bars reflect mean values across participants for each stimulus type, error bars reflect 
within-participant SEM.(e) 3D surface maps of vStr and amy are displaying FDR-corrected model encoding maps for PLS ‘norm’ models of positive and 
negative images, and for the PLS model trained on participants’ ratings of negative images (Analysis 1).
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Data collection Studies 1, 2, and 3: Psychtoolbox (version 3.0, http://psychtoolbox.org/) running on Matlab (version 2017a, Mathworks). For Studies 4 - 6 

please refer to the original publications listed in Supplementary Table 8.

Data analysis FMRI data were analyzed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm) and custom Matlab (MATLAB 2019a, The MathWorks, Inc., Natick, 

MA) code available at https://github.com/canlab/2021_Ceko_MPA2_Aversive. A univariate general linear model (GLM) was used to create 

images for the prediction analyses. The subject-level GLM analyses were conducted in SPM12. 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size A recommended sample size for the prediction of within-person effects using group-level data is > 50 participants (Lindquist et al. 2017).

Data exclusions No data were excluded from the analyses.

Replication The main findings reflect effects that are reliable across 5 different independent studies.

Randomization

Blinding

All subjects completed two fMRI sessions (only one session is reported in the current paper). We pseudo-randomized (counterbalanced) the order of 

experimental conditions and of sessions to minimize order effects. There was no significant effect of session order, as reported in Supplementary Table 4.

No blinding was necessary for the study because there were not between-subject factors in our study, therefore investigators were not blinded 

to group assignment. No blinding was performed for data analysis. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics Study 1: N = 55 participants, Study 2: N = 32 participants, Study 3: 32 participants, Study 4: 182 participants, Study 5: 95 

participants, Study 5: 59 participants. 

Age and gender of participants for each Study are detailed in Supplementary Table 8. 

Recruitment Participants for Studies 1, 2 and 3 were recruited from the Boulder/Denver Metro Area via flyers posted around the University of 
Colorado Boulder campus, local Boulder coffeeshops and the library, and on-line (university bulletin, Craigslist). The majority 
of the study sample thus stem from the university undergraduate population. Participants were healthy, with normal or corrected 

to normal vision and normal hearing, and with no history of psychiatric, physiological or pain disorders and neurological conditions, no 

current pain symptoms, and no MRI contraindications. Eligibility was assessed with a general health questionnaire, a pain safety 

screening form, and an MRI safety screening form.

Ethics oversight The institutional review board of the University of Colorado Boulder approved the study, and all participants provided written 

consent. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type Block design
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Design specifications Task details for each of the four studies are listed in Supplementary Table 8, and include: stimulus types, intensity levels, 

stimulus duration, and number of trials per stimulus type. 

Behavioral performance measures Behavioral outcome was the rating of aversiveness (avoidance) for each stimulus type, rated on a general Labeled 

Magnitude Scale (gLMS) scale ranging from 0-10.  Mean within-participant ratings ± SE for each stimulus level are listed 

in Supplementary table 1 and in Figure 2A. 

Acquisition

Imaging type(s) Functional

Field strength 3 Tesla

Sequence & imaging parameters Multiband EPI sequence (TR = 460 ms, TE = 27.2 ms, field of view = 220 mm, multiband acceleration factor = 8, flip angle 

= 44°, 64 x 64 matrix, 2.7 x 2.7 x 2.7 mm voxels, 56 interleaved ascending slices, phase encoding posterior >> anterior). 

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software FMRI data were preprocessed using an automated pipeline based on AFNI, FSL, and SPM5, and implemented by the Mind 

Research Network, Albuquerque, NM. Preprocessing steps included: distortion correction using FSL’s top-up tool (https://

fsl.fmrib.ox.ac.uk/fsl/), motion correction (affine alignment of first EPI volume (reference image) to T1, affine alignment of all 

EPI volumes to the reference image and estimation of the motion parameter file (sepi_vr_motion.1D, AFNI, https://

afni.nimh.nih.gov/), spatial normalization, interpolation to 2 × 2 × 2 mm3 voxels and smoothing with a 6 mm FWHM kernel 

(SPM 8, https://www.fil.ion.ucl.ac.uk/spm/software/spm8/). 

Normalization Spatial normalization via participant’s T1 image (T1 normalization to MNI 152 space (nonlinear transform), normalization of 

EPI image to MNI 152 space (3dNWarpApply, AFNI,  https://afni.nimh.nih.gov/)

Normalization template MNI 152, group standardized space

Noise and artifact removal Prior to first level analysis, in each run we removed the first 15 volumes of the fMRI data to allow for image intensity 

stabilization and identified severe global motion outliers (spikes) in the data. Spikes were defined as time points in the data 

with either the absolute global signal intensity or the mahalanobis distance across slice-specific global means and spatial 

standard deviations exceeding 10 median absolute deviations. 

Volume censoring No censoring, instead inclusion of motion spikes as regressors in the first-level model

Statistical modeling & inference

Model type and settings Brain models predicting stimulus-type specific aversiveness ratings and common (across all 4 stimulus types) negative affect 

ratings were developed using the multivariate partial least squares regression (PLS-R) on Study 1 data.

Effect(s) tested To test the predictive performance of each PLS brain model, we calculated in each participant the root mean squared error 

(RMSE) for each model’s predictions of its target outcome (i.e., four average aversiveness ratings per stimulus type) and the 

ability to significantly predict increasing aversiveness within-participant. To provide an interpretable effect size metric, we 

estimated in each participant the Pearson correlation (r) between observed and cross-validated predicted ratings and tested 

whether the output of one model predicted the specific type of negative affect it was trained to predict (sensitivity) and not 

other types (specificity). To determine which brain areas made reliable contributions to the prediction and to threshold voxel 

weights for interpretation and display, we constructed 10,000 bootstrap samples (with replacement) consisting of paired 

brain and outcome data and performed PLSR on each. The z-scores at each voxel were estimated based on the mean and 

standard error of the bootstrap distributions, and the statistical map was thresholded based on the corresponding p-values. 

The maps were thresholded voxel-wise at q < FDR-corrected.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)
Anatomical parcellations and the corresponding atlases used to select ROIs are detailed in Supplementary 

Table 7. 

Statistic type for inference
(See Eklund et al. 2016)

Voxel-wise

Correction FDR correction
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Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis PLSR was conducted using plsregress.m in MATLAB (version R2016b). Predictors (X) constituted 880 whole-

brain activation maps associated with participants (55) x stimulus intensity level (4) x stimulus type (4), 

aggregated into an images x voxels matrix (stacked across participants), and split into training and test sets 

using 5-fold blocked cross-validation (leaving out all images associated with test-set participants together). 

The activation maps were derived via univariate GLM analysis in which we modeled stimulation periods 

against implicit baseline and averaged across trials of each stimulus level of each stimulus type to obtain 16 

contrast images per participant. To estimate their predictive accuracy, and specificity for the target outcome, 

and generalization to new individual participants, these patterns were applied to fMRI activation maps 

obtained from new participants in cross-validation test sets and prospectively applied to independent studies 

(N = 247). Model (pattern) responses were calculated using the dot product of each pattern weight map with 

the univariate GLM-derived fMRI activation map for each participant for each stimulus level. Weight maps 

applied to Study 1 and Study 1b were based on data from out-of-sample individuals (cross-validated 

estimates), and the final pattern weights applied to Studies 2-4 were based on the full study sample (full 

samples estimates).  
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