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Interindividual differences in pain can be
explained by fMRI, sociodemographic, and
psychological factors
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In a recent article, Hoeppli et al. 1 reported that sociodemographic and
psychological factors were not associated with interindividual differ-
ences in reported pain intensity. In addition, the interindividual dif-
ferences in pain could not be detected by thermal pain-evoked brain
activitiesmeasured by functionalMagnetic Resonance Imaging (fMRI).
Their comprehensive analyses provided convincing evidence for the
null findings, but here, we provide another look at their conclusions by
analyzing a new large-scale fMRI dataset involving thermal pain
(N = 124) and re-analyzing their behavioral and fMRI data (N = 101). Our
main findings are as follows: First, a multiple regression model incor-
porating all available sociodemographic and psychological measures
could significantly predict the interindividual differences in reported
pain intensity. The key to achieving a significant prediction was
to include multiple individual difference measures in a single model.
Second, with a new fMRI dataset with a group of 124 participants, we
could identify brain regions and a multivariate pattern-based pre-
dictive model significantly correlated with the interindividual differ-
ences in reported pain intensity. Our results, alongwithHoeppli et al.’s
findings, highlight the challenge of predicting interindividual differ-
ences in pain but also suggest that it is not an impossible task.

Developing neuroimaging biomarkers of pain has the potential
to improve pain assessment andmanagement by providing objective
measures of the subjective experience of pain2. However, it remains
challenging to develop such biomarkers due to the substantial
interindividual variability in brain systems for pain processing3 and
pain-expressive behaviors4. This interindividual variability is influ-
enced by multiple factors, including biological, psychological, and
social ones, requiring systematic investigation of how these multiple
factors and components are associated with interindividual varia-
bility in pain. In this endeavor, Hoeppli et al.’s recent report could be
discouraging to those hoping for progress in brain-based pain bio-
marker development. The study provided twomain conclusions, one
for the sociodemographic and psychological factors and the other
for the fMRI signal. They showed that both data types failed to

explain interindividual differences in pain sensitivity and reported
pain intensity.

First, they reported that individual differences in pain could not
be explained by sociodemographic and psychological factors, which is
somewhat inconsistent with what has been known about their effects
on pain5. For example, previous studies have shown that pain experi-
ence can be influenced by age6, ethnicity7, sex8, and emotional states9,
amongmany others. Potentially, the inconsistencymay come from the
fact that they did not consider the complex interactions among the
sociodemographic and psychological factors. Though they examined
the relationship between pain ratings and each of those factors sepa-
rately, it is widely recognized that sociodemographic and psycholo-
gical factors are intercorrelated, and their influences on pain are likely
to come from their complex interactions. For example, a previous
study reported that the ethnic differences in pain were mediated by
perceived discrimination10, and another study showed that psycholo-
gical and personality factors identified to be important for chronic
pain were also associated with the socioeconomic status of patients
with chronic pain11. These highlight that sociodemographic and psy-
chological factors interact with each other to influence pain. Thus, to
better understand the effects of sociodemographic and psychological
factors on interindividual differences in pain, it is crucial to test their
combined effects, for example, by incorporating them into a single
model12.

To test this idea, we reanalyzed the behavioral data from Hoeppli
et al. to examine the complex interactions between sociodemographic
and psychological factors and their combined effects on inter-
individual differences in self-reported pain intensity. Specifically, we
first examined the correlations between the sociodemographic and
psychological measures and then performed a multiple regression
with cross-validation using the sociodemographic and psychological
measures as independent variables. The result showed that the
sociodemographic and psychological measures were highly inter-
correlated; 20% of all pairs (11 out of 55 pairs) showed significant
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correlations at q <0.05, false discovery rate (FDR) corrected (Fig. 1a).
This supports the idea that the sociodemographic and psychological
variables arehighly inter-connected.Whenweexamined the combined
effects of the sociodemographic and psychological measures on pain
ratings using multiple regression with leave-one-subject-out cross-
validation (LOSO-CV), the prediction-outcome correlation was sig-
nificant, r =0.260, p = 0.026. To account for potential issues related to
multicollinearity,we also tested aprincipal component regressionwith
LOSO-CV, and the results were comparable, r =0.270, p =0.021.
Importantly,whenwe reduced the number ofpredictors to twoor one,

the cross-validated correlations were reduced to negative values
(mean r = −0.005 and −0.1608 for two variables and one variable;
Fig. 1b). Overall, different from Hoeppli et al.’s report, our findings
show that the sociodemographic andpsychological factors canexplain
individual differences in pain ratings, but only when their combined
effects were accounted for.

Second, Hoeppli et al. reported that the individual differences in
pain ratings could not be detected by fMRI signal, which is also
somewhat inconsistent with what has been known. For example, two
recent studies have shown that multivariate whole-brain functional
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Fig. 1 | Reanalysis of data from Hoeppli et al. We reanalyzed behavioral (N = 73)
and fMRI data (N = 101) of Hoeppli et al. For the behavioral data analysis, we
included participants’ data with no missing values (N = 73). Details of the reana-
lysis methods can be found in theMethods section. a The correlations between the
demographic and psychological measures showed a large number of significant
correlations (11 out of 55 pairs) after correcting formultiple comparisons with false
discovery rate (FDR) q <0.05. b Results of multiple regression analysis with leave-
one-subject-out cross-validation (LOSO-CV). (Left) We examined the cross-
validated prediction performance of linear regressionmodels with varied numbers
of independent variables—one, two, and all eleven variables. The cross-validated
prediction-outcome correlations were negative for the model with a single inde-
pendent variable, mean ± SD of r = −0.161 ± 0.334, two-tailed, and for the model
with two independent variables, r = −0.005 ± 0.176, two-tailed. However, the mul-
tiple regression model with all 11 variables showed a significant cross-validated
prediction-outcome correlation, r =0.260, p =0.0263 (uncorrected), two-tailed.
Each dot represents the mean prediction-outcome correlation, and the error bar
represents its standard deviation. (right) The scatter plot shows the actual versus
cross-validated predicted pain ratings based on themultiple regressionmodel with
all 11 independent variables. The error band represents a 95% confidence interval of
the regression line. c (left) Thebrain activationmap illustrates themain effect of the

high-intensity heat stimulation (48 °C), thresholded at FDR q <0.05, two-tailed.
(right) No brain regions survived FDR correction (q <0.05) for multiple compar-
isons in the analysis of the relationship between average pain ratings and brain
activity in response to the high-intensity heat stimulation (48 °C). We show the
brain activation map with an uncorrected threshold at p <0.05 for additional
reference. L and R indicate the left and right hemispheres, respectively. d We
performed Lasso-regularized Principal Component Regression (Lasso-PCR) to
predict individual differences in average pain intensity ratings. (left) The scatter
plot shows the actual versus predicted pain ratings with LOSO-CV. The prediction-
outcome correlation was not significant, r =0.1764, p =0.0776, two-tailed. (right)
The map shows the voxels that reliably contributed to the prediction of mean pain
ratingsbasedonbootstrap tests (thresholdedatuncorrectedp <0.001, two-tailed).
Though the weight map was distinct from the predictive map based on our
own data (spatial similarity, r =0.0247), the periaqueductal gray (PAG) was con-
sistently identified as an important region across both datasets. eWe also tested an
a priori fMRI multivariate pattern-based marker of pain, Neurologic Pain Signature
(NPS), and the results showed a non-significant correlation betweenNPS responses
and actual pain ratings, r =0.0017, p =0.9869, two-tailed. Error bands denote the
95% confidence interval of the regression lines. Source data are provided as a
Source Data file.

Matters arising https://doi.org/10.1038/s41467-024-51910-9

Nature Communications |         (2024) 15:7883 2

www.nature.com/naturecommunications


connectivity patterns can predict the interindividual differences in
painof patients with chronicpain13 or healthy participants14. One of the
functional connectivity models also showed a significant association
with the number of pain sites in a large-scale dataset in an independent
study15. In addition, another study reported that multivariate func-
tional connectivity patterns related to pain-predictive psychological
traits were associated with the socioeconomic status of patients with
chronic pain11. Note that these studies cannot provide direct compar-
isons because, unlike Hoeppli et al., which utilized fMRI activation
signals, these studies employed fMRI connectivitymeasures. However,
a previous study showed that the striatal fMRI activity could explain
increased pain ratings in African Americans compared to Hispanics
and non-Hispanic whites10, which was also associated with perceived
discrimination. All these findings suggest that fMRI signals can explain
interindividual differences in pain to some extent.

To reconcile the discrepancy, we analyzed a large-scale pain fMRI
dataset (N = 124) that included a similar number of participants to
Hoeppli et al. We aimed to replicate their main findings that there was
no brain region or multivariate pattern that could explain

interindividual differences in pain ratings. We first examined the dis-
tribution of average pain intensity ratings for the high-intensity heat
stimuli (47.5 °C). As shown in Fig. 2a, the ratings showed a wide range
of distribution, which was consistent with Hoeppli et al.—the averaged
pain ratings ranged from “Moderate” to near “Strongest imaginable”
on the general Labeled Magnitude Scale (gLMS)16. Then, we analyzed
fMRI data using the same methods that Hoeppli et al. used in their
study: (1) univariate general linear model, where we included inter-
individual variations in pain ratings as a covariate, and (2) multivariate
lasso-regularized principal component regression (LASSO-PCR) to
predict interindividual variations in pain ratings. Though the analysis
methods were the same, the results were different. The univariate
analysis identified multiple brain regions (Fig. 2b, bottom), including
periaqueductal gray (PAG) and supplementary motor area (SMA),
significantly correlatedwith interindividual variations in pain ratings at
q <0.05, FDR corrected. The multivariate predictive modeling with
LASSO-PCR also showed a significant prediction-outcome correlation
with LOSO-CV, r =0.252, p =0.0047 (Fig. 2c). Ventrolateral prefrontal
cortex and anterior insula, in addition to the brain regions identified in
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Fig. 2 | Brain activation patterns correlated with interindividual differences in
pain ratings during high-intensity heat simulation.We replicated a series of
analyses performed by Hoeppli et al. using a new fMRI dataset (N = 124), which
included a comparable number of participants to Hoeppli et al. a The plot shows
the distribution of average pain ratings for high-intensity heat stimulation (47.5 °C,
the number of repeats per participant = 16). The error bars represent the standard
error of the mean for each individual’s pain ratings. The ratings are sorted in
ascending order. Dashed horizontal lines indicate anchors of the general Labeled
Magnitude Scale (gLMS)16. b Univariate analysis results with a general linear model
(GLM)using individualdifferences in averagedpain ratings as a covariate. The input
imageswere the beta coefficientmaps for high-intensity heat stimulation. (top) The
brain activation map shows the main effects of high-intensity heat stimulation
(47.5 °C). L and R indicate the left and right hemispheres, respectively. (bottom).
The brain activation map shows regions with significant correlations between
average pain ratings and brain activation associated with high-intensity heat sti-
mulation (see Supplementary Table 1 for the list of suprathreshold regions). The

brain maps were thresholded with FDR q <0.05, two-tailed. c Multivariate analysis
results with Lasso-regularized Principal Component Regression (Lasso-PCR) to
predict interindividual variations in pain ratings. (left) The scatter plot shows the
actual versus predicted pain ratings with leave-one-subject-out cross-validation
(LOSO-CV) based on the Lasso-PCR model. The prediction-outcome correlation
was 0.252, p =0.0047, two-tailed. (right) The map shows the voxels that reliably
contributed to the prediction of mean pain ratings based on bootstrap tests
(thresholded at uncorrected p <0.001, two-tailed; Supplementary Table 2).
Thresholding was performed for the purpose of display; all weights were used in
the prediction. d We tested the NPS17. The results showed a significant prediction-
outcome correlation between the NPS response and the individual differences in
pain ratings, r =0.202, p =0.0243, two-tailed. The scatter plot shows the actual pain
ratings versus NPS responses. NPS response was calculated with the dot-product
between the NPS weights and brain response to high-intensity heat stimulation.
Error bands represent the 95% confidence interval of the regression lines. Source
data are provided as a Source Data file.
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the univariate analysis, such as the PAG and SMA, appeared to be
important contributors to the prediction. In addition, different from
Hoeppli et al., the Neurologic Pain Signature (NPS)17, an a priori mul-
tivariate pattern-based fMRI marker of pain, was able to explain the
individual differences in pain with a significant correlation, r = 0.202,
p =0.0243 (Fig. 2d). Although the effect size is small, there is a quali-
tative difference between a model that explains minimal variance and
one that explains none at all. The former can contribute to a composite
model capable of accounting for significant variance, as exemplified in
boosting algorithms in machine learning, thereby potentially offering
clinical utility. Overall, our results suggest that the brain activity pat-
terns in both univariate and multivariate analyses can capture the
interindividual differences in pain ratings.

There can be many reasons for the discrepancy between our
results and those of Hoeppli et al., including the sample differences
(e.g., sociodemographic background and psychological status) and
the experimental and analysis factors, such as MR scanner, fMRI
sequence, experimental design, procedure, rating scale, preproces-
sing steps, etc. To assess whether this difference could be attributed
to the differences in the analysis tools and pipelines, we reanalyzed
the fMRI data from Hoeppli et al.—the authors generously shared
their preprocessed data with us for this article, allowing us to re-
analyze the data with our own tools (for details, see “Methods”). The
results were largely consistent with those reported in Hoeppli et al. 1

(Fig. 1c–e), suggesting that the null results observed in Hoeppli et al.
cannot be attributed to differences in analysis tools or small changes
in the analysis pipeline.

One plausible explanation for the discrepancy may be the limited
sample size, particularly given the small to medium effect size, which
would require a substantially larger sample to detect such effects
reliably18. Thus, determining the predictive accuracy of fMRI-based
pain models will require the analysis of additional large-scale samples
or repeated validation across multiple datasets. In addition, incor-
porating intricate interactions among sociodemographic, psycholo-
gical, and neurobiological factors—collectively referred to as
biopsychosocial factors—into the analysis may be crucial. This idea is
supported by a recent study showing that the brain-phenotypemodels
reliably failed in individuals who deviated from stereotypical profiles19,
underscoring the importance of considering sociodemographic and
psychological factors to make generalizable predictive models.

Thus, although Hoeppli et al.’s null findings may initially appear
discouraging, they offer deep insights into the intricate interplay
among a multitude of biological, psychological, and socio-
demographic factors that contribute to the interindividual variability
of pain. Overall, these findings shed light on how to approach the
understanding and modeling of the multifaceted nature of pain.

Methods
Participants
A total of 137 healthy and right-handed participants were recruited
from the Suwon area in South Korea. Eligibility was assessed through
online questionnaires, including pain and MRI safety-screening ques-
tions.We excluded participants with psychiatric, physiological, or pain
disorders, neurological conditions, or MRI contraindications. Addi-
tionally, thirteen participants were excluded from the analysis due to
technical issues with the thermal stimulus equipment, voluntary
requests to quit the scanning session, or the presence of abnormal
brain structures (e.g., arachnoid cysts). Thus, we included the
remaining 124 participants in the current study (nfemale = 61, mean
age = 22.17 years, SD age = 2.69 years). We obtained written consent
from all participants, who also received financial compensation for
their participation. The present studywas approved by Sungkyunkwan
University Institutional Review Board. The same dataset was used in a
previously published study as an independent test dataset3. The study
addressed a different research question from the current study. The

sex informationof participantswas collectedby self-report.Wedid not
perform a sex-based analysis.

fMRI experimental paradigm
In the MRI, participants experienced contact heat stimuli on their left
forearm and rated pain intensity after each thermal stimulation. There
were eight heat pain task runs with twelve trials per run, resulting in 16
trials per participant for each temperature. Each trial consisted of a
series of events: (1) watching a 20-second movie clip (pre-heat), (2)
experiencing thermal stimulation (12 s; ramp-up: 2.5 s; plateau: 7 s;
ramp-down: 2.5 s), and (3) rating pain intensity (5 s). Two of the heat
pain task runs were without the pre-heat movie clip, resulting in 12
trials with thermal stimulation and pain ratings. Participants rated the
intensity of pain on a general Labeled Magnitude Scale16 after the
3–5 seconds (random jitter) following the stimulus offset. The scale
ranged from 0 to 1 with anchors of “No sensation” (0), “Weak” (0.061),
“Moderate” (0.172), “Strong” (0.354), “Very strong” (0.533), and
“Strongest imaginable” (1). We explained how to use the scale with
anchors before the experiment, and we removed the anchors during
the actual task to prevent potential influences of anchors on ratings.
Thermal stimulation was delivered to the volar surface of the left
forearm using a Pathways system (Medoc Ltd) with a 16-mm ATS
thermode endplate. The temperatures of thermal stimulation ranged
from 45 °C to 47.5 °C (in 0.5 °C increments, totaling six intensities)
from thebaseline 32 °C. The order of stimuluswaspseudorandomized.
A single highest temperature (47.5 °C) was delivered before each heat-
induced task run to avoid the initial habituation of the skin site to
contact heat. In this study, we only used the data responding to the
highest temperature stimuli (i.e., 47.5 °C).We collectedbehavioral data
using Matlab (version 2018b, MathWorks) with the Psychophysics
Toolbox 3 (http://www.psychtoolbox.org/).

fMRI acquisition and preprocessing
The whole-brain fMRI images and high-resolution T1-weighted struc-
tural images were obtained using a 3-Tesla Siemens Prisma scanner
with a 64-channel head coil at the Center for Neuroscience Imaging
Research (CNIR), Sungkyunkwan University, Suwon, South Korea. We
obtained functional echo-planar images (EPI) using the following
sequence parameters: TR of 460ms, TE of 27.20ms, multiband
acceleration factor of 8, field of view of 220mm, voxel size of
2.7 × 2.7 × 2.7mm³, and slice order acquisitions of interleaved. The
preprocessing of the functional EPI images was performed using Sta-
tistical Parametric Mapping 12 (SPM12) and FMRIB Software Library
(FSL). To ensure image intensity stability, the initial 18 volumes
(approximately 8 s) were removed from each run. Then, the functional
EPI images were corrected for motion (i.e., realignment). Distortion
caused by the magnetic field inhomogeneity was also corrected using
FSL’s topup function. Then, the functional EPI images were co-
registered and spatially normalized into the Montreal Neurological
Institute normative atlas with voxel interpolation at 2 × 2 × 2mm³. We
then smoothed the images with a 5-mmfull width at half-maximum. To
reduce motion-related artifacts, we conducted an Independent Com-
ponent Analysis-based strategy for Automatic Removal Of Motion
Artifacts (ICA-AROMA)20. In addition, we excluded some run data
basedon the following twocriteria regarding framedisplacement (FD),
which quantifies the frame-wise displacement of images: (1) the mean
FD of a run exceeding 0.2mm, and (2) the FD of any volume of a run
exceeding 5.0mm21,22.

Single-trial fMRI data analysis
Weutilized a single-trial design approach tomodel the brain responses
to heat stimulation. In this approach, the response magnitude of each
voxel for each trial was estimated using a general linear model (GLM).
This model included separate regressors for each pain trial, as in the
‘beta series’ approach23. Additional regressors, event boxcars
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convolved with canonical hemodynamic response function, were cre-
ated to model the periods of pre-stimulus (movie-viewing), anticipa-
tion, heat stimulation, and pain rating. Given that we already removed
motion-related artifacts through ICA-AROMA during preprocessing,
onlyfiveprincipal components ofWMandCSF signal anda linear trend
were included as nuisance covariates. We used SPM12 with a 180-
second high-pass filter to perform the first-level analysis on this design
matrix. Subsequently, we calculated variance inflation factors (VIFs) on
a trial-by-trial basis. VIFs are a measure of design-induced uncertainty
caused by collinearity with nuisance regressors. This step aimed to
identify and exclude trials where the estimates could be significantly
influenced by artifacts occurring during the trials. Any trials with VIFs
exceeding 3 were excluded from the analyses. On average, 0.1371 trials
were excluded due to high VIFs, with a standard deviation of 0.7686.
Finally, single-trial beta images were obtained and served as input
images for predictive modeling. The original number of trials was 96,
but due to the errors in stimulus delivery or high variance inflection
factor (> 3) and due to runs excluded because of high mean FD values,
the average number of trials used in the analyses was 91.6 (standard
deviation = 10.6).

Pain intensity rating analysis
We calculated the mean pain ratings for each participant by averaging
pain ratings from the trials with the highest temperature stimulus (i.e.,
47.5 °C). The average pain intensity was near the “Very Strong” anchor
(0.533), indicating that, on average, participants experienced a very
strong level of pain for the highest temperature condition. The average
number of trials included in this analysis was 15.5806 (standard
deviation =0.9967).

Univariate analysis with average pain ratings as a covariate
With the average pain ratings obtained from theprevious analysis step,
we conducted a GLM analysis on the average beta images for the
highest temperature using the average pain ratings as a covariate. The
main effect of the 47.5 °C heat stimulation is shown in the top panel of
Fig. 2b, and the correlates of the average pain intensity ratings are also
shown in the bottom panel of Fig. 2b.

Multivariate analysis with the neurological pain signature (NPS)
We tested a priori fMRI multivariate pattern-based marker of pain,
Neurological Pain Signature (NPS)17, to examine whether we can pre-
dict the individual differences in pain intensity ratings with NPS
responses. To obtain the NPS response, we calculated the dot-product
of the NPS pattern weights and the average beta estimates for the
highest temperature stimulation. We then calculated the correlations
between the NPS response and the individual differences in the pain
intensity ratings (Figs. 1e and 2d).

Multivariate analysis with LASSO-PCR
To develop an fMRI-based predictive model of the average pain
intensity rating, we used lasso-regularized principal component
regression (LASSO-PCR) with leave-one-subject-out cross-validation
(LOSO-CV). The input features for themodeling were the average beta
estimates of the highest temperature condition, and the outcome
variable was the average pain intensity rating for the highest tem-
perature stimulation. The cross-validated prediction performance of
the predictive model was assessed with a prediction-outcome corre-
lation, which refers to the correlation between the predicted and
actual pain intensity ratings. To identify brain voxels that reliably
contribute to the prediction, we thresholded the predictive weight
map using p-values from a bootstrap test with 5000 iterations.

Re-analysis of fMRI data from Hoeppli et al. 1

To investigate whether different tools and analysis pipelines resulted
in the discrepancy between our findings and those of Hoeppli et al. 1,

we reanalyzed the fMRI data (N = 101) from Hoeppli et al. 1 with our
analysis pipelines. The preprocessing steps done by Hoeppli et al.
before data sharing included motion correction, slice timing correc-
tion, spatial smoothing (FWHM=5mm), and ICA-FIX (for details of the
preprocessing, please see ref. 1). We then normalized functional EPI
images to the Montreal Neurological Institute standard brain space
with the interpolation to 2 × 2 × 2mm³ voxels using FSL flirt. We per-
formed a first-level GLM with a ‘beta series’ approach23 using SPM12,
modeling brain responses to the heat stimulus of each trial with a 180-
second high-pass filter. We also modeled brain activity during pain
rating by including one regressor for the pain rating period. Event
boxcars were convolved with a canonical hemodynamic response
function. Given that the stepof ICA-FIX,whichwas alreadydonebefore
the data sharing, was supposed to denoise non-neuronal artifacts, we
additionally included only five principal components of WM and CSF
signals and a linear trend as nuisance covariates. Finally, we conducted
a GLM with averaged beta images for the highest temperature by
including average pain intensity ratings as a covariate and a multi-
variate analysis to predict average pain intensity ratings.

Statistical analysis and software
All analyses in the present study were performed with Matlab (version
R2020b, MathWorks). More specifically, we used SPM12 and in-house
behavioral and neuroimaging analysis tools (CanlabCore [https://
github.com/canlab/CanlabCore] and cocoanCORE [https://github.
com/cocoanlab/CocoanCore]). All statistical tests are two-tailed
unless otherwise noted.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The behavioral and fMRI data used in this study are available through a
Figshare repository at https://doi.org/10.6084/m9.figshare.23691669.
Source data for figures are provided with this paper. Source data are
provided with this paper.

Code availability
The analysis scripts to replicate and regenerate figures and results
from this study are available at https://doi.org/10.6084/m9.figshare.
23691669.
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