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Identifying biomarkers that predict mental states with large effect sizes and high test-retest reliability is a growing 

priority for fMRI research. We examined a well-established multivariate brain measure that tracks pain induced 

by nociceptive input, the Neurologic Pain Signature (NPS). In N = 295 participants across eight studies, NPS 

responses showed a very large effect size in predicting within-person single-trial pain reports ( d = 1.45) and 

medium effect size in predicting individual differences in pain reports ( d = 0.49). The NPS showed excellent 

short-term (within-day) test-retest reliability (ICC = 0.84, with average 69.5 trials/person). Reliability scaled 

with the number of trials within-person, with ≥ 60 trials required for excellent test-retest reliability. Reliability 

was tested in two additional studies across 5-day ( N = 29, ICC = 0.74, 30 trials/person) and 1-month ( N = 40, 

ICC = 0.46, 5 trials/person) test-retest intervals. The combination of strong within-person correlations and only 

modest between-person correlations between the NPS and pain reports indicate that the two measures have 

different sources of between-person variance. The NPS is not a surrogate for individual differences in pain reports 

but can serve as a reliable measure of pain-related physiology and mechanistic target for interventions. 
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. Introduction 

Understanding individual differences in brain activity and their links

ith behavior is a primary focus of fMRI research. One approach is to

evelop brain biomarkers that measure brain processes related to exter-

al constructs (e.g., pain, mental illness, other healthy and performance

utcomes). Biomarkers can inform diagnosis and treatment, help sub-

ype patient groups, or predict future risk of illness ( FDA-NIH Biomarker

orking Group, 2016 ). But to deliver on this potential, biomarkers must

ossess good measurement properties. In this paper, we assess the mea-

urement properties of an evoked pain biomarker, the Neurological Pain
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ignature (NPS; Wager et al., 2013 ). We focused on two measurement

roperties: effect sizes in predicting pain and test-retest reliability. Large

ffect sizes indicate robust and replicable effects, and if they are suffi-

iently large, they may have sufficient precision to diagnose outcomes at

he individual-person level ( Poldrack et al., 2017 ; Reddan et al., 2017 ).

est-retest reliability is a prerequisite for prediction of stable individual

ifferences ( Bennett and Miller, 2010 ; Drost et al., 2011; Nakagawa and

chielzeth, 2010 ; Streiner, 2003 ). 

Historically, the measurement properties of fMRI signals have been

oo infrequently assessed given their importance. Effect sizes for pre-

icting external variables can be calculated at both within-person and

etween-person (individual differences) levels when repeated mea-
cember 2021 
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b  

(  
ures are collected from each person. Predictions at these levels can

e inconsistent because they depend on different sources of variance

 Bakdash and Marusich, 2017 ; Kievit et al., 2013 ). For example, two

ariables can be positively correlated at the within-person level but have

o relation at the between-person level. Assessing effect sizes at both

evels guards against incorrect interpretations of the predictions and fa-

ilitates a deeper understanding of the brain measures. Test-retest re-

iability reflects temporal stability under repeated tests and is usually

easured with an intraclass correlation coefficient (ICC; Shrout and

leiss, 1979 ). Both effect sizes and test-retest reliability rely on a low

andom error in the measurement. Test-retest reliability also relies

n high inter-individual variability, indicating differentiable measures

cores across subjects ( Barnhart et al., 2007 ). Thus, quantifying effect

ize and test-retest reliability of fMRI-based biomarkers has the poten-

ial to greatly improve their utility and move the field towards more

igorous methods. 

As translational goals accelerate and sample sizes increase, mea-

urement properties of fMRI studies are increasingly a focus of at-

ention ( Bennett and Miller, 2010 ; Button et al., 2013 ; Dubois and

dolphs, 2016 ; Elliott et al., 2019 , 2020; Hedge et al., 2018 ;

erting et al., 2018 ; Kraemer, 2014 ; Nichols et al., 2017 ; Noble et al.,

019 ; O’Connor et al., 2017 ; Poldrack et al., 2017 ; Xu et al., 2016 ;

uo and Xing, 2014 ; Zuo et al., 2019 ). Studies of traditional univari-

te brain measures provide a pessimistic picture of task fMRI’s mea-

urement properties. Effect sizes of univariate brain measures in local

rain regions have often been limited to moderate effect sizes (i.e.,

ohen’s d values centered on approximately d = 0.5; Poldrack et al.,

017 ; Marek et al., 2020 ). The reliability of univariate brain measures

n many studies with small samples varies substantially ( Letzen et al.,

016 ; Manuck et al., 2007 ; Nord et al., 2017 ; Plichta et al., 2012 ). A

ecent meta-analysis of fMRI literature across diverse tasks generally

emonstrated low reliability (ICCs < 0.4) of the average activation level

f single brain regions of interest (ROI), which did not decrease with

onger test-retest interval ( Elliott et al., 2020 ). Similarly, univariate-

tyle approaches to resting-state fMRI studies have found low test-retest

eliability, with ICCs < 0.3 at the individual edge-level connectivity

 Noble et al., 2019 ; Pannunzi et al., 2017 ). 

However, alternatives to traditional single-region univariate anal-

ses offer substantial promise. An important trend in the fMRI stud-

es is the development of a priori multivariate brain measures that

an be used as biomarkers, also called ‘neuromarkers’ or ‘signatures’

 Abraham et al., 2017 ; Arbabshirani et al., 2017 ; Doyle et al., 2015 ;

abrieli et al., 2015 ; Haynes, 2015 ; Kragel et al., 2018 ; Orrù et al.,

012 ; Woo et al., 2017 ). Such models consist of patterns of brain activ-

ty, connectivity, and other derived features (e.g., graph-theoretic mea-

ures) within and across brain regions, which can be applied prospec-

ively to new samples or participants. Because they are pre-specified

odels applied to new samples without re-fitting, neuromarkers pro-

ide an opportunity to evaluate measurement properties across dif-

erent samples and contexts systematically. Multivariate brain signa-

ures can yield measures with much larger effect sizes (Cohen’s d

 2; Chang et al., 2015 ; Geuter et al., 2020 ; Krishnan et al., 2016 ;

arek et al., 2020 ; Wager et al., 2013 ; Zunhammer et al., 2018 ). They

lso show enhanced test-retest reliability for both task-evoked (ICCs >

.7; Kragel et al., 2021 ; Woo and Wager, 2016 ) and resting-state (ICCs >

.6; Gordon et al., 2017 ; Gratton et al., 2020 ; Yoo et al., 2019 ; Zuo and

ing, 2014 ) fMRI measures in some studies. However, this has rarely

een assessed across diverse samples and scanners, particularly with re-

pect to a systematic evaluation of effect sizes for within-person and

etween-person prediction of external variables and test-retest reliabil-

ty. 

In the current study, we evaluated a well-established multivariate

rain-based model related to pain , the Neurologic Pain Signature (NPS;

ager et al., 2013 ). The NPS was trained using machine-learning tech-

iques to predict individual pain intensity ratings from brain activity

uring heat-induced pain in healthy participants. The training dataset
2 
ncluded, for each participant, four trial-averaged pain-related activa-

ion maps and four trial-averaged pain reports for each of four stimulus

ntensities, including non-painful warmth, low pain, medium pain, and

igh pain calibrated for each participant to range from level 2 (barely

ainful) to level 8 (maximum pain participants would tolerate) on an

1-point visual analogue scale. The activation maps were calculated

ased on the contrast with the implicit baseline (i.e., the intercept in

he general linear model estimation). By using activation maps from

ach pain intensity as a predictor set, and the averaged pain reports

rom each pain intensity as the outcome and using principal compo-

ent regression to stabilize the parameter estimate maps, the algorithm

rovided interpretable brain maps composed of linear weights on vox-

ls. The NPS consists of patterns within and across brain regions, in-

luding the thalamus, the posterior and middle insula, the secondary

omatosensory cortex, the anterior cingulate cortex, the midbrain, and

ther regions (see Fig. 1 (A)). The sensitivity and specificity of the NPS

n response to painful stimuli were tested across different studies and

amples. The NPS predicts subjective pain intensity in response to nox-

ous thermal ( Wager et al., 2013 ), mechanical ( Krishnan et al., 2016 ),

lectrical ( Krishnan et al., 2016 ; Ma et al., 2016 ), and visceral stim-

li ( Van Oudenhove et al., 2020 ). In addition, it does not respond to

on-noxious warmth ( Wager et al., 2013 ), threat cues ( Krishnan et al.,

016 ; Ma et al., 2016 ; Wager et al., 2013 ), social rejection-related stim-

li ( Wager et al., 2013 ), vicarious pain ( Krishnan et al., 2016 ), or aver-

ive images ( Chang et al., 2015 ), but may respond to some degree to

ertain somatomotor conditions ( Harrison et al., 2021 ). 

In addition, the NPS has been shown to have external validity in some

linical applications. (1) The NPS as a neuromarker linked to nocicep-

ive pain can serve as an intermediate phenotype potentially relevant

o various disorders. For example, enhanced NPS responses, combined

ith another brain signature related to non-painful sensory processing,

iscriminated fibromyalgia from pain-free controls with 93% accuracy

 López-Solà et al., 2017 ). The NPS response to capsaicin-induced hy-

eralgesia has been found to be intact in healthy controls but absent

n an individual with congenital insensitivity to pain caused by muta-

ion in the Na v 1.7 gene ( McDermott et al., 2019 ). (2) The NPS showed

otential as a pharmacodynamic or response biomarker in some stud-

es. For example, the magnitude of the NPS response to painful heat

as substantially reduced when the analgesic agent remifentanil was

dministered ( Wager et al., 2013 ). Following spinal manipulation, par-

icipants with neck pain showed decreased NPS activation ( Weber et al.,

019 ). (3) The NPS response is largely unresponsive to placebo treat-

ents, showing potential as a biomarker resistant to the placebo effects.

 meta-analysis showed that placebo effects on the NPS were very small

 g = − 0.07). In comparison, placebo effects on the pain reports were

oderate ( g = − 0.66) ( Zunhammer et al., 2018 ). 

NPS effect sizes have been mainly assessed on within-person corre-

ations with pain ( Lindquist et al., 2017 ) and reliability has only been

ssessed in a preliminary fashion ( Kragel et al., 2021 ; Woo and Wa-

er, 2016 ). The measurement properties of individual brain regions of

he NPS have not been assessed systematically. Comparing the measure-

ent properties of the whole NPS and individual brain regions could

elp clarify whether NPS’s performance exceeds individual brain regions

nd reveal the different performances of different individual brain re-

ions. Further, the properties that influence test-retest reliability of the

PS (e.g., amount of data collected per person) have not been system-

tically examined in detail across studies. Examining these properties

ould both help understand the NPS as a test case and reveal princi-

les underlying the sources of error and reliability of task fMRI more

roadly. 

. Materials and methods 

We tested four types of effect sizes and test-retest reliability for

oth the NPS and constituent local brain regions across ten studies

see Fig. 1 (B); total N = 444). The effect sizes were tested in Studies
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 to 8 (i.e., the single-trial dataset, see below for detailed description;

 = 295), including mean response to painful stimuli, within-person cor-

elation with temperature, within-person correlation with pain reports,

nd between-person correlation with pain reports. For test-retest relia-

ility, we tested the short-term test-retest reliability of the NPS and local

rain regions of interest in the single-trial dataset. With the single-trial

ataset, we also examined several factors that might influence the per-

ormance of the test-retest reliability of the NPS, including the number of

rials, stimuli intensities, and contrast types ( Bennett and Miller, 2010 ,

013 ). To further examine the impact of the time interval between ses-

ions on the test-retest reliability, we included another two pain studies

ith five days (Study 9, N = 29) and one month (Study 10, N = 120)

nterval between sessions. 

.1. Data description 

The single-trial dataset (i.e., Studies 1 to 8) included 15,940 single-

rial images of fMRI activity from healthy subjects with multiple levels

f noxious heat and pain ratings within one scan session (i.e., one day)

cross 295 participants. Participants received a series of painful stimuli

nd rated their individually experienced pain following each stimulus in

ll studies. Each study also included psychological manipulation (except

or study 3), such as cue-induced expectation and placebo treatment.

tudy 9 collected behavioral and fMRI data from 29 healthy partici-

ants during heat pain tasks across three sessions with an average of

ve-day intervals between sessions. Study 10 collected behavioral and

MRI data from 120 participants with chronic back pain receiving pres-

ure pain stimulation across two sessions with an average of one month

etween sessions. Descriptive data on age, sex, and other study sample

eatures are given in Table 1 . The number of trials, stimulation sites,

timulus intensities, and durations varied across studies but were com-

arable; these variables are summarized in Table 2 . These studies were

iverse in study-specific features and manipulations, which increased

he generalizability of our findings. 

Data from the Studies 1 to 8 have been used in previous publications

see Table 1 ). Other data have been published from Study 10, but the

ressure-pain data reported here were not previously published. Data

rom study 9 were not previously published.All the analyses and find-

ngs reported here are novel, and the data used for developing the NPS

i.e., the data in the first study of Wager et al., 2013 ) were not included

n the current study to avoid double-dipping ( Kriegeskorte et al., 2009 ).

ll participants were recruited from New York City and Boulder/Denver

etro Areas. The institutional review board of Columbia University and

he University of Colorado Boulder approved all the studies, and all
ig. 1. NPS pattern and measurement properties. (A) NPS pattern weights . The m

isplay only; all weights were used in the subsequent analyses. Two examples of aMC

quares indicate individual voxel weights. Ins denotes Insula, V1 primary visual area,

TS superior temporal sulcus, PCC posterior cingulate cortex, LOC lateral occipital c

owercase letters as follows: r denotes right, l left, m middle, d dorsal, p posterior, pg p

nd the corresponding data used in different studies. Measurement properties inc

nd test-retest reliability of the NPS. We analyzed four types of effect sizes, includ

orrelation between the NPS response and the temperature of the heat stimuli; (3) the

he between-person correlation between the NPS response and pain ratings. Besides a

ight influence the test-retest reliability, including the number of trials, stimuli int

essions. The influence of the time intervals between sessions was assessed with the

eliabilities were assessed with the data in Studies 1 to 8 (i.e., the single-trial dataset)

ffect size of studies 1 to 8. The vertical bar represents the standard error. Each small 

tudy. See Figure S2 for the effect sizes of local regions of the NPS. (D) Short-term te

ig dot represents the mean reliability of studies 1 to 8. The vertical bar represents 

ownward-pointing arrows indicate ICC < 0 (presumably due to noise). See Figure S3

ain reports. (E) Illustration of longer-term test-retest reliability of NPS with a 5

nd session 3 in study 9 (ICC = 0.73). Each dot represents one participant. The line r

, and the shadow represents the standard error. (F) Illustration of longer-term te

esponses between session 1 and session 2 in the treatment-as-usual control group of

hich also limits reliability. Each dot represents one participant. The line represents

hadow represents the standard error. ∗ ∗ ∗ p < 0.001; ∗ ∗ p < 0.005. 

4 
articipants provided written informed consent. Participants’ prelimi-

ary eligibility was determined through an online questionnaire, a pain

afety screening form, and an MRI safety screening form. Participants

ith psychiatric, physiological, or pain disorders, neurological condi-

ions, and MRI contraindications were excluded before enrollment. No

articipants were excluded from the study after screening other than in-

ividuals who, upon screening, provided different responses that made

hem ineligible (e.g., developing a physiological disorder). 

.2. Thermal and pressure stimulation 

We delivered thermal stimulation to multiple skin sites using a TSA-

I Neurosensory Analyzer (Medoc Ltd., Chapel Hill, NC) with a 16 mm

eltier thermode endplate, except for study 3 using the Pathway ATS

odel and study 8 with a 32 mm Peltier thermode endplate. Study 10

elivered pressure rather than thermal stimulation, using a custom-built

neumatic device pushing a piston into the left thumbnail. At the end

f every trial, participants rated pain intensity on a visual analog scale

r a labeled magnitude scale ( Bartoshuk et al., 2004 ). Thermal stimu-

ation parameters varied across studies, with stimulation temperatures

anging from 44.3 °C to 50 °C and stimulation durations ranging from

.85 to 12.5 s. Most studies applied thermal stimulation to the left volar

orearm; study 2 also applied the left foot’s dorsum; study 6 and study 8

pplied the stimulation to the lower leg. See Table 2 for stimulation lo-

ation, intensity levels, duration, number of trials per subject, and other

ognitive manipulations. 

.3. fMRI preprocessing 

We maintained the preprocessing pipelines from the original pub-

ished studies despite variations across studies as this will likely reflect

he variations in preprocessing steps observed across studies in the lit-

rature. In studies 1 to 8, structural T1-weighted images were coregis-

ered to each subject’s mean functional image using the iterative mu-

ual information-based algorithm implemented in SPM ( Ashburner and

riston, 2005 ). They were then normalized to MNI space using SPM.

ollowing SPM normalization, study 4 included an additional step of

ormalization to the group mean using a genetic algorithm-based nor-

alization ( Atlas et al., 2010 , 2014 ; Wager and Nichols, 2003 ). In each

unctional run, we removed initial volumes to allow for image intensity

tabilization. We also identified image-intensity outliers (i.e., ’spikes’)

y computing the mean and standard deviations (SD, across voxels)

f intensity values for each image for all slices to remove intermittent

radient and severe motion-related artifacts present to some degree in
ap shows thresholded voxel weights at q < 0.05 false discovery rate (FDR) for 

C/SMA and midbrain unthresholded patterns are presented in the insets; small 

 S2 secondary somatosensory cortex, MCC midcingulate cortex, Thal thalamus, 

omplex and IPL inferior parietal lobule. Direction is indicated with preceding 

erigenual. (B) A diagram summarizing analyses of measurement properties 

lude effect sizes in predicting external variables (temperature and pain reports) 

ing: (1) the mean response of the NPS to stimulation; (2) the within-person 

 within-person correlation between the NPS response and pain ratings; and (4) 

ssessing the test-retest reliability of the NPS, we also analyzed four factors that 

ensity, contrast types (i.e., baseline condition), and the time interval between 

 data in Studies 9 and 10. All other analyses of the effect sizes and test-retest 

. (C) Four types of NPS effect size . Each big dot represents a type of averaged 

dot represents the effect size of one study. See Figure S1 for the results for each 

st-retest reliability of subjective pain reports, NPS, and local regions. Each 

the standard error. Each small dot represents the reliability of one study. The 

 for the illustration of short-term test-retest reliability of the NPS and subjective 

-day interval . Correlations of the NPS responses between session 1, session 2 

epresents the linear relationship between the NPS response in sessions 1, 2 and 

st-retest reliability of NPS with a 1-month interval . Correlation of the NPS 

 study 10 (ICC = 0.46). Note that this test involved fewer trials per participant, 

 the linear relationship between the NPS response in sessions 1 and 2, and the 
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Table 1 

Study demographics, experiment sessions and prior publications. 

Study N Gender Ages, M (SD) # of Sessions 

Interval between 

Sessions (days) Prior publications 

Study1 33 healthy 22 F 27.9 (9.0) 1 N/A ( Geuter et al., 2020 ; Lindquist et al., 

2017 ; Woo et al., 2015 ; Woo et al., 2017 ) 

Study2 28 healthy 10 F 25.2 (7.4) 1 N/A ( Chang et al., 2015 ; Geuter et al., 2020 ; 

Krishnan et al., 2016 ; Lindquist et al., 

2017 ; Woo et al., 2017 ) 

Study3 93 healthy 49 F 28.7 (5.7) 1 N/A ( Geuter et al., 2020 ; Losin et al., 2020 ) 

Study4 17 healthy 9 F 25.5 1 N/A ( Atlas et al., 2010 ; Geuter et al., 2020 ; 

Lindquist et al., 2017 ; Woo et al., 2017 ) 

Study5 50 healthy 27 F 25.1 (6.9) 1 N/A ( Geuter et al., 2020 ; Lindquist et al., 

2017 ; Roy et al., 2014 ; Woo et al., 2017 ) 

Study6 19 healthy 10 F 25.5 (9.5) 1 N/A ( Geuter et al., 2020 ; Jepma et al., 2018 ) 

Study7 29 healthy 16 F 20.4 (3.3) 1 N/A ( Lindquist et al., 2017 ; Woo et al., 2017 ) 

Study8 26 healthy 11 F 28 (9.3) 1 N/A ( Koban et al., 2019 ; Lindquist et al., 2017 ; 

Woo et al., 2017 ) 

Study9 29 healthy 16 F 29.9 (9.8) 3 Ses 1 to 2: 4.93 (4.57); 

Ses 2 to 3: 4.79 (2.81); 

unpublished 

Study10 120 chronic back pain 61 F 42.6 (15.6) 2 25 - 40 ( Ashar et al., 2021 ) 

Table 2 

Stimulation protocol. 

Study Stimulus location Stimulus Intensity ( °C) 

Stimulus duration 

(seconds) 

Trials per 

subject Other experimental manipulations 

Study1 Arm 44.3, 45.3, 46.3, 47.3, 

48.3, 49.3 

12.5 97 Cognitive self-regulation intervention to increase or 

decrease pain 

Study2 Arm, Foot 46, 47, 48 11 81 Combination of painful stimuli with heat-predictive 

visual cues for low, medium, and high pain 

Study3 Arm 47, 48, 49 8 and 11 36 Heat stimuli were intermixed with physically and 

emotionally aversive sound stimuli 

Study4 Arm 41.1 - 47.1 10 64 Combination of painful stimuli with heat-predictive 

auditory cues 

Study5 Arm 46, 47, 48 11 48 Combination of painful stimuli with heat-predictive 

visual cues and with a placebo manipulation 

Study6 Leg 48, 49 1.85 70 Combination of painful stimuli with heat-predictive 

visual cues 

Study7 Arm 43.5 - 47.5 10 64 Combination of painful stimuli with intervention for 

perceived control (making vs. observing cue choice) 

and expectancy (80% vs. 50% probabilities of low 

pain) 

Study8 Leg 48, 49, 50 1.85 96 Combination of painful stimuli with heat-predictive 

visual cues and unreinforced social information 

Study9 Leg 46, 47, 48 12 30 Combine painful stimuli with neural feedback on 

suppressing NPS activity 

Study10 thumbnail 4, 7 kg/cm2 ∗ 6 5 Data collected in the context of a randomized 

controlled trial, including a psychotherapy treatment, 

placebo treatment, and treatment-as-usual control 

group 

∗ Study 10 delivered pressure rather than thermal stimulation. 
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ll fMRI data. We first computed both the mean and the SD of inten-

ity values across each slice for each image to identify outliers. Ma-

alanobis distances for the matrix of (concatenated) slice-wise mean

nd standard deviation values by functional volumes (overtime) were

omputed. Any values with a significant 𝜒2 value (corrected for mul-

iple comparisons based on the more stringent of either false discovery

ate or Bonferroni methods) were considered outliers. In practice, less

han 1% of the images were deemed outliers. The outputs of this proce-

ure were later included as nuisance covariates in the first-level models.

ext, functional images were corrected for differences in each slice’s

cquisition timing and were motion-corrected (realigned) using SPM.

he functional images were warped to SPM’s normative atlas (warping

arameters estimated from coregistered, high-resolution structural im-

ges), interpolated to 2 × 2 × 2 mm 

3 voxels, and smoothed with an

 mm FWHM Gaussian kernel. This smoothing level has been shown to

mprove inter-subject functional alignment while retaining sensitivity to

esoscopic activity patterns consistent across individuals ( Shmuel et al.,

010 ). 
5 
The preprocessing of study 9 and 10 were conducted using fMRIPrep

.2.4 ( Esteban et al., 2019 ). The BOLD reference was co-registered to the

1w reference. Co-registration was configured with nine degrees of free-

om to account for distortions remaining in the BOLD reference. Head-

otion parameters with respect to the BOLD reference (transformation

atrices, and six corresponding rotation and translation parameters) are

stimated. The BOLD time-series were resampled onto their original,

ative space by applying a single, composite transform to correct for

ead-motion and susceptibility distortions. The BOLD time-series were

esampled to MNI152NLin2009cAsym standard space, generating a pre-

rocessed BOLD run in MNI152NLin2009cAsym space. The preprocessed

OLD runs were smoothed with a 6 mm FWHM Gaussian kernel. We

dentified image-intensity outliers (i.e., ’spikes’) using Mahalanobis dis-

ances (3 standard deviations) and dummy regressors were included as

uisance covariates in the first level. Twenty-four head motion covari-

tes per run were entered into the first level model as well (displacement

n six dimensions, displacement squared, derivatives of displacement,

nd derivatives squared). 
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.4. General linear model (GLM) analyses 

For studies 1 to 8, a single trial, or "single-epoch", design and analysis

pproach was employed to model the data. Quantification of single-trial

esponse magnitudes was done by constructing a GLM design matrix

ith separate regressors for each trial, as in the "beta series" approach

 Mumford et al., 2012 ; Rissman et al., 2004 ). First, boxcar regressors,

onvolved with the canonical hemodynamic response function (HRF),

ere constructed to model cue, pain, and rating periods in each study.

hen, we included a regressor for each trial, as well as several types of

uisance covariates. Because each trial consisted of relatively few vol-

mes, trial estimates could be strongly affected by acquisition artifacts

hat occur during that trial (e.g., sudden motion, scanner pulse artifacts).

herefore, trial-by-trial variance inflation factors (VIFs; a measure of

esign-induced uncertainty due, in this case, to collinearity with nui-

ance regressors) were calculated, and any trials with VIFs that exceeded

.5 were excluded from the analyses. Single-trial analysis for study 2 and

 were based on fitting a set of three basis functions, rather than the stan-

ard HRF used in the other studies. This flexible strategy allowed the

hape of the modeled hemodynamic response function (HRF) to vary

cross trials and voxels. This procedure differed from that used in other

tudies because (a) it maintains consistency with the procedures used in

he original publication on study 4 ( Atlas et al., 2010 ), and (b) it pro-

ides an opportunity to examine predictive performance using a flexible

asis set. For both studies, the pain period basis set consisted of three

urves shifted in time and was customized for thermal pain responses

ased on previous studies ( Atlas et al., 2010 ; Lindquist et al., 2009 ). To

stimate cue-evoked responses for study 4, the pain anticipation period

as modeled using a boxcar epoch convolved with a canonical HRF.

his epoch was truncated at 8 s to ensure that fitted anticipatory re-

ponses were not affected by noxious stimulus-evoked activity. As with

he other studies, we included nuisance covariates and excluded trials

ith VIFs > 2.5. In study 4 we also excluded trials that were global out-

iers (those that exceeded 3 SDs above the mean). We reconstructed the

tted basis functions from the flexible single-trial approach to compute

he area under the curve (AUC) for each trial and in each voxel. We used

hese trial-by-trial AUC values as estimates of trial-level anticipatory or

ain-period activity. For studies 9 and 10, we estimated a GLM for each

articipant, including the nuisance covariates generated in preprocess-

ng and three regressors of interest: pain stimuli, pain ratings, and button

resses, each convolved with the standard HRF. 

.5. Computing neurologic pain signature (NPS) responses 

We computed a single scalar value for each trial and each subject,

epresenting the NPS pattern expression in response to the thermal

nd pressure pain stimulus (using the contrast [Pain Stimulation mi-

us Baseline] images). There are three methods to calculate the NPS

attern response, given the NPS is represented as a vector x , brain re-

ponse to pain stimulus as a vector y, and the voxel number in the

rain mask as n : (1) dot-product (NPS = 

𝑛 ∑

𝑖 

𝑥 𝑖 𝑦 𝑖 ), which combine whole-

mage magnitude and spatial similarity information; (2) cosine similar-

ty (NPScos = 

∑𝑛 
𝑖 
𝑥 𝑖 𝑦 𝑖 √∑𝑛 

𝑖 
𝑥 2 
𝑖 

√∑𝑛 
𝑖 
𝑦 2 
𝑖 

), which excludes whole-image magnitude

nformation, representing the dot-product of unit vectors; (3) correlation

NPScorr = 

∑𝑛 
𝑖 
( 𝑥 𝑖 − ̄𝑥 )( 𝑦 𝑖 − ̄𝑦 ) √∑𝑛 

𝑖 
( 𝑥 𝑖 − ̄𝑥 ) 2 

√∑𝑛 
𝑖 
( 𝑦 𝑖 − ̄𝑦 ) 2 

), which excludes information related

o whole-image mean and magnitude, equivalent to the cosine similarity

etween centered vectors. The effect size and reliability of these three

PS response metrics were not significantly different from each other

see Table S5). We reported the results of the dot-product of the NPS in

he main text, considering it is the most often reported metric in the pub-

ished papers examining the NPS and facilitating the comparison with

ther studies. The dot product metric (unlike cosine similarity and cor-

elation) includes signal related to overall image intensity, which may
6 
e a feature of intense stimuli that activate diffuse neuromodulatory

ystem ( Lohani et al., 2017 ). 

To test whether NPS’s performance exceeds individual brain regions

ithin NPS, we also computed the pattern expression, i.e., dot-product,

or each brain area within NPS. The individual brain areas were defined

ased on the NPS map thresholded at q < 0.05 FDR, and k > 10 contigu-

us voxels. Firstly, we identified the peak voxel in each cluster surviving

orrection. Secondly, we applied a Gaussian smoothing kernel of 4-mm

WHM around each peak voxel to generate a mask that included all

oxels defining the local pattern for each region. Then, we applied the

ask to the original NPS pattern (i.e., unthresholded NPS map includ-

ng all voxel weights). See López-Solà et al., 2017 for a more detailed

escription method of the local region definition. We compared the ef-

ect size and the reliability of individual brain regions with the whole

PS pattern using paired t-tests by treating the study as the unit of ob-

ervation and corrected for multiple comparisons using q < 0.05 FDR.

n most of the regions in the NPS, pain is associated with the increased

verall activity, i.e., positive brain regions, including the right middle

nsula (rmIns), the right dosal posterior Insula (rdpIns), the left mid-

le Insula (lmIns), the right secondary somatosensory cortex (rS2), the

nterior midcingulate cortex (aMCC), the right Thalamus (rThal), ver-

is and the right primary visual area (rV1). Such regions include the

ajor targets of ascending nociceptive afferents. In a subset of other

egions, pain is associated with the decreased overall activity, i.e., neg-

tive brain regions, including the perigenual ACC (pgACC), the poste-

ior cingulate cortex (PCC), right inferior parietal lobule (rIPL), left lat-

ral occipital complex (lLOC), right posterior lateral occipital complex

rpLOC), right lateral occipital complex (rLOC), and left superior tem-

oral sulcus (lSTS). These regions are not strongly linked to nociception

nd are not direct targets of nociceptive afferents; rather, they have been

ssociated with a variety of affective, autonomic, social, self-referential,

nd decision-making functions ( Roy et al., 2012 , 2014). 

.6. Effect size analysis 

We analyzed four types of effect sizes of the NPS in the single-trial

ataset. (1) Mean response [Pain minus Baseline] : the mean NPS response

cross all trials irrespective of the temperature and experiment manip-

lations. A one-sample t -test was conducted for all participants in each

tudy. (2) within-person correlation with temperature : correlation between

he temperature and NPS response. A one-sample t -test was conducted

or the correlation coefficients of all participants for each study. (3)

ithin-person correlation with pain reports : correlation between pain re-

orts and the NPS response. A one-sample t -test was conducted for the

orrelation coefficients of all participants for each study. (4) Between-

erson correlation with pain reports . The mean NPS response and mean

ain reports of each participant were calculated by the average of each

articipant’s trials. The correlation between the NPS response and pain

eports was calculated across all participants for each study. The effect

ize was determined by Cohen’s d values, which are commonly char-

cterized as follows: 0.20 indicates small; 0.50 indicates medium; 0.80

ndicates large, and 1.20 indicates very large effect size ( Cohen, 2013 ;

awilowsky, 2009 ). In between-person correlations, the transformation

etween r and cohen’s d is d = 

2 𝑟 √
1− 𝑟 2 

. 

.7. Test-retest reliability analysis 

Test-retest reliability of the mean NPS response [Pain minus Base-

ine] was determined by the intra-class correlation coefficient (ICC;

oo and Li, 2016 ; McGraw and Wong, 1996 ; Shrout and Fleiss, 1979 ).

o compare with the NPS, we also tested the reliability of the mean pain

eports using ICC. As an index to characterize the temporal stability of

ndividual differences (i.e., between-participant reliability), a large ICC

equires both high inter-individual variability and low intra-individual

ariability. High inter-individual variability implies highly differen-

iable measures across subjects, and low intra-individual variability in-
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w  
icates high stability across different time points ( Barnhart et al., 2007 ).

CC is calculated by mean squares obtained through analysis of variance

mong a given set of measures. We characterized two types of test-retest

eliability, i.e., short-term and longer-term test-retest reliability, based

n the time interval between measures. In the single-trial dataset, which

ncludes studies 1 to 8, we calculated the short-term test-retest reliability

ince data were collected within one session. To do so, we constructed

 two-way mixed-effects model with time (1st vs. 2nd half of the trials)

s a fixed effect and subjects as a random effect. Since we were inter-

sted in the reliability of the averaged measures of the 1st and 2nd half

f the trials (i.e., the average of two halves, k = 2), the mixed-effect

odel is referred to as ICC(3,k) = (BMS - EMS) / BMS. BMS represents

he mean square for between-person measures, and EMS represents the

ean square for error. The ICC values in the current study were calcu-

ated using the ICC function in the ‘psych’ library in R. 

For studies 9 and 10, we assessed the longer-term test-retest reliabil-

ty since data were collected across sessions with longer time intervals.

e also constructed a two-way mixed-effects model with time (multiple

essions) as a fixed effect and subjects as a random effect. Instead of cal-

ulating ICC(3,k), we calculated ICC(3,1) = (BMS - EMS) / (BMS + (k -

) ∗ EMS) for longer-term test-retest reliability since we were interested

n the measure of one session, not the average of all sessions. BMS repre-

ents the mean square for between-person measures, EMS represents the

ean square for error, and k represents the number of scanning sessions

 Koo and Li, 2016 ; McGraw and Wong, 1996 ; Shrout and Fleiss, 1979 ).

easures with ICCs are commonly characterized as follows: less than

.40 are thought to have poor reliability, between 0.40 and 0.60 fair

eliability, 0.60 and 0.75 good reliability, and greater than 0.75 ex-

ellent reliability ( Cicchetti and Sparrow, 1981 ). We also reported the

5% confidence interval of ICC values ( Koo and Li, 2016 ; McGraw and

ong, 1996 ). 

. Results 

.1. NPS effect sizes 

We tested four types of effect sizes of the NPS in the single-trial

ataset. (1) Mean response [Pain minus Baseline] : mean responses of the

PS were significantly larger than zero in each of the 8 studies ( t = 5.02

 19.22, ps < 0.001; mean d = 1.92, ranging from 1.22 to 2.62). (2)

ithin-person correlation with temperature : the within-person correlations

etween the NPS and temperature were significantly larger than zero in

ach of the 8 studies as well (mean r = 0.05 - 0.42, t = 2.32 - 18.91, ps <

.05; mean d = 1.50, ranging from 0.53 to 2.67). (3) Within-person corre-

ation with pain reports : the within-person correlations between the NPS

nd subjective pain reports were significantly larger than zero in each

f the 8 studies (mean r = 0.14 - 0.35, t = 4.81 - 11.49, ps < 0.001; mean

 = 1.45, ranging from 0.94 - 2.13). (4) Between-person correlation with

ain reports : the between-person correlations between the mean NPS and

ean subjective pain rating (i.e., individual differences) were only sig-

ificant in 1 out of 8 studies ( r = − 0.13 - 0.74, p = 0.0007 - 0.70; mean

 = 0.49, ranging from − 0.27 to 2.20; see Fig. 1 and Figure S1 for four

ypes of tests and effect sizes; see Table S1 for the statistical details of

ach study). 

In study 4, the only individual study that showed a significant

etween-person correlation, the stimuli were tailored to the individu-

ls to elicit matched subjective pain. Except for studies 4 and 7, other

tudies applied the same temperatures to all participants, and the in-

ividual differences in subjective pain were not stimulus-driven. The

articipant sample size of study 4 was the smallest ( N = 17) among

tudies 1 to 8. Recent studies have shown inflated between-subject ef-

ect size statistics in small sample size studies ( Marek et al., 2020 ). In

hese studies, the between-person effect sizes were not significantly cor-

elated with the number of participants per study ( r = − 0.41; p = 0.32).

arger between-person effect sizes might also be associated with the

umber of trials per participant. More data per participant could reduce
7 
ithin-person variance around each person’s true value, reducing error

n the between-person correlation. However, here, between-person ef-

ect sizes were not significantly correlated with the number of trials per

articipant ( r = 0.25; p = 0.56). 

To test whether NPS’s performance exceeds individual brain regions

ithin the NPS, we did the same analyses for each local brain area of

he NPS and compared the effect sizes with the NPS. Generally, positive

rain regions had higher effect sizes than negative brain regions and the

ffect sizes of the full NPS were the highest in all four tests (see Figure

2). To confirm the difference in the effect sizes between NPS and lo-

al brain regions, we conducted paired t-tests treating the study as the

nit of the observation and corrected the multiple comparisons using q <

.05 FDR. The NPS has (1) significantly larger effect size than most local

rain regions in the mean response, except for the rmIns (NPS vs. the lo-

al region mean ± se = 1.92 ± 0.16 vs. 1.72 ± 0.19); (2) significantly larger

ffect size in the within-person correlation with the temperature, except

or the rmIns (1.50 ± 0.27 vs. 1.21 ± 0.26); (3) significantly larger effect

ize in the within-person correlation with the subjective pain reports, ex-

ept for the aMCC (1.45 ± 0.16 vs. 1.19 ± 0.12); (4) does not significantly

iffer in effect size in the between-person correlation with the subjective

ain reports from most brain regions, except for the rIPL (0.49 ± 0.26 vs.

 0.27 ± 0.17) (see Table S2 for all statistic details). 

.2. Test-retest reliability 

The short-term test-retest reliability of the NPS calculated in the

ingle-trial dataset was distributed from good to excellent among the 8

tudies (ICC = 0.73 - 0.91; mean ± s .e. = 0.84 ± 0.02; see Table S3 for more

etails), which was significantly smaller than the reliability of subjective

ain reports (ICC = 0.85 - 0.96; mean ± s .e. = 0.92 ± 0.01; paired-t-test:

(7) = 4.11, p = 0.005). Reliability of the NPS was numerically higher

han any local brain regions and was significantly higher than rThal and

gACC ( q < 0.05 FDR; see Fig. 1 (D) and Table S4 for statistical details).

.3. NPS local regions with good measurement properties 

While brain-wide measures like the NPS have favorable measure-

ent properties compared with local signals, there is still much value

n examining local regions. For example, in Wager et al., 2013 , the local

attern within dpIns could distinguish between somatic (pain) and non-

omatic (rejection) stimuli. The dpIns is also the first cortical target of

scending nociceptive pathways through VMpo thalamus ( Craig, 2006 ),

nd contains more body site-specific information ( Krishnan et al., 2016 ),

nd can trigger pain when stimulated ( Mazzola et al., 2012 ). In subse-

uent work, the local NPS pattern within dpIns was the only region

o distinguish pain from breathlessness and somatomotor stimulation

 Harrison et al., 2021 ). Conversely, the local NPS pattern within aMCC

etter distinguished aversive (pain or rejection) from non-aversive stim-

li (non-painful warmth). We identified several local regions of the NPS

ith relatively good measurement properties. A combination of three

utoffs, i.e., d > 0.2 for both within-person and between-person cor-

elation with pain, and ICC > 0.6 for short-term test-retest reliability,

dentified six reliable local-region patterns: lmIns, rmIns, rdpIns, aMCC,

S2, and rThal (see Table S2 and Table S4). These local regions have

elatively better measurement properties than other local regions, such

s rV1, vermis, and NPS regions with predominantly negative weights

e.g., pgACC). 

.4. Longer-term test-retest reliability 

The longer-term test-retest reliability was tested in studies 9 and 10.

or study 9, both reliability of the NPS and pain reports were excel-

ent (ICC = 0.74, 95CI = [0.61, 0.84] and 0.87, 95CI = [0.80, 0.92];

ee Fig. 1 (E)). The time interval between session 1 and session 2 was

.93 ± 4.57 days, and the time interval between session 2 and session 3

as 4.79 ± 2.81 days. Study 10 was a clinical trial randomizing chronic
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Fig. 2. Factors that influence the reliability of the NPS response (left column) 

and subjective pain reports (right column). The small numbers from 1 to 10 cor- 

respond to studies 1 to 10. (A) The Influence of the trial number and time 

interval between sessions. The ICC values were calculated based on different 

trial numbers. Each line with color shows the nonlinear relationship between 

the trial number and the ICC values of the corresponding study (fitted using the 

loess function in R). The ICC values estimated with less than 10 participants were 

excluded due to poor estimation. The black line showed the average of studies 

1 to 8, which was weighted by the square root of the number of participants 

in each study. The gray shadow presents the standard error, which was also 

weighted by the square root of the number of participants in each study. On av- 

erage, to achieve excellent reliability, at least 60 trials were required to calculate 

the NPS response. Reliability was comparable in studies 9 and 10 with a longer 

time interval across 5-day and 1-month given the same number of trials (trial 

number = 30 and 5). The reliability of pain reports were excellent in general 

but were poor in study 10. (B) The influence of the temperature of the heat 

stimuli. Only participants with more than 4 trials in each temperature were 

included in the ICC calculation. The ICC values estimated with less than 13 par- 

ticipants were excluded due to poor estimation. Under these criteria, the study 

4 and 7 were with no ICC value presented in the plot. NPS responses are more 

reliable in higher temperature stimuli. Whereas pain reports are reliable across 

all temperature stimuli. (C) The influence of the types of contrast. The larger 

dots represent the ICC values of the measurements calculated by comparing a 

temperature condition with the baseline, and the smaller dots represent the ICC 

values of the measurements calculated by comparing a temperature condition 

with the lowest temperature condition in each study. The length of the dashed 

line represents the difference between the ICC values of measurements calcu- 

lated with different types of contrast. The downward-pointing arrow indicates 

ICC < 0. The measurements calculated by comparing with a control condition 

are less reliable than by comparing with the implicit baseline in virtually every 

case. 
ack patients to a psychological treatment, a placebo treatment, or a

ontrol group ( n = 40 per group), with approximately 1 month between

he two assessment sessions. In the control group, the reliability of the

PS was fair (ICC = 0.46, 95CI = [0.22, 0.65]; see Fig. 1 (F)) and the

eliability of pain reports was poor (ICC = 0.26, 95CI = [ − 0.15, 0.49]).

he reliabilities of the NPS and pain reports in the psychotherapy group

nd the placebo group were poor (see Table S3 for details). Reliability

n study 10 was likely limited by the low number of trials (5 trials per

erson) used in this study (see next section). 

.5. How does the number of trials influence reliability? 

We tested how the number of trials of the heat stimuli influences the

est-retest reliability. The results in Fig. 2 (A) left panel showed that the

ore trials averaged to calculate the NPS response, the higher the ICC

alues in each of the 8 studies. On average, 60 or more trials per con-

ition were required to achieve excellent reliability of the NPS. Given

he same number of trials being averaged, ICC values in study 9 (30 tri-

ls) and study 10 (5 trials) with longer time intervals were comparable

ith ICC values of studies 1 to 8. The trend was flatter for the test-retest

eliability of subjective pain reports, which achieved an excellent level

ith even one trial. 

.6. How does the effect size of stimuli influence reliability? 

The property of the stimulus itself might influence the reliability,

uch as the effect size it induced. For example, heat stimuli with higher

emperatures might generally induce higher pain effects. The results in

ig. 2 (B) left panel showed that NPS responses induced by higher tem-

erature had higher test-retest reliability. However, this was not the case

or the subjective pain rating, which was very reliable across all temper-

tures. NPS responses might be more specific for high painful stimulus

ntensity, while subjective pain rating could represent a wider range of

ain levels in a reliable way. 

.7. How does the type of contrast influence reliability? 

There are two commonly used methods to calculate the brain re-

ponse to an experimental condition, comparing a condition with the

mplicit baseline or to a control condition. The results in Fig. 2 (C) left

anel showed that the reliability of NPS dropped when the response of

PS was calculated in contrast with a lower temperature, instead of the

mplicit baseline (ICC mean ± s .e. = 0.25 ± 0.17 vs. 0.81 ± 0.03, which was

alculated by averaging the reliability of all temperatures in one study

rst and calculating the mean and standard error of the reliability across

ll studies. Same below.). The drop of the reliability was smaller in sub-

ective pain reports (ICC mean ± s .e. = 0.80 ± 0.03 vs. 0.93 ± 0.01). This

nding indicates that using a contrast with a control condition with low

eliability could reduce the reliability of the contrast measure. 

. Discussion 

Identifying biomarkers with good measurement properties is a grow-

ng priority for fMRI research. In the current paper, we systematically

valuated the effect sizes and the test-retest reliability of the NPS across

en studies and 444 participants. The NPS showed a very large effect

ize in predicting within-person single-trial pain reports (mean d = 1.45,

anging from 0.94 to 2.13). The effect size in predicting individual dif-

erences in pain reports is medium and heterogeneous across studies

mean d = 0.49, ranging from − 0.27 to 2.20, equivalent to r = 0.20).

he NPS showed excellent short-term (within-day) test-retest reliability

mean ICC = 0.84). Reliability was comparable in a study with a longer

ime interval across 5-day ( N = 29, ICC = 0.74). It was lower in a study

ith 1-month test-retest intervals ( N = 40, ICC = 0.46), though this may

ave been driven by the low number of trials (5 trials per person) rather

han the longer time interval between sessions. 
8 
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Fig. 3. Summary of variances and factors that influence the effect size and reliability. (A) Different sources of variance at the between-person level for the NPS 

and self-report pain. Rectangles represent the observed variables, i.e., pain reports and NPS. Ellipses represent the latent variables that we aim to measure, i.e., the 

core nociceptive feeling. The circle represents sources of variance that add to each observed measure. Both pain reports and NPS activity measure the core nociceptive 

circuits that generate pain experience. However, different sources of variance at the between-person level reduce the correlation between pain reports and the NPS 

response. This suggests that the NPS is not as useful as a surrogate measure for pain reports at the individual differences level. In contrast, the NPS could be useful 

as an objective biological target to measure physiological contributors to pain, in combination with subjective pain reports. (B) Factors that influence reliability. 

Rectangles represent the observed variables, such as the NPS response, across different sessions. Ellipses represent the latent variables that we are interested in 

modeling. Results suggest that stimuli with larger effect sizes have higher test-retest reliability, indicated by the upward-pointing red arrow, and have the same 

effect on all sessions, indicated by 𝜂. Some active change across sessions could decrease the test-retest reliability, indicated by the downward-pointing blue arrow. 

They might have different effects on different sessions, indicated by 𝛼_1, 𝛼_2, and 𝛼_n. The circle represents the measurement error that could decrease the test-retest 

reliability, indicated by the downward-pointing blue arrow. There might be different errors on different sessions, indicated by 𝜎1 , 𝜎2 , and 𝜎n . 
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The current findings with a large sample of participants indicate that

he NPS measures neurophysiological processes related to evoked pain

ith large effect sizes at the within-person level and high test-retest

eliability. However, as a measure of individual differences in pain sen-

itivity, the NPS is only modestly related to the pain reports. This incon-

istency of the effect sizes at within-person and between-person levels

ould be led by the different sources of variance underlying the NPS

esponses and pain reports (see Fig. 3 (A)). At the within-person level,

ifferent temperatures across trials are among the primary sources of

ariance in NPS responses and pain reports. The effect sizes of within-

erson correlations between the NPS and the temperatures were dis-

ributed from medium to huge ( d = 0.53 - 2.67). The effect sizes of

ithin-person correlations between the pain reports and the tempera-

ures were distributed from very large to huge ( d = 1.58 - 12.41; see Ta-

le S6). Both the NPS and pain reports are responsive to noxious stimuli

ntensities. 

However, at the between-person level, the NPS and pain reports’

ariances may have been driven by many factors that are irrelevant

o the stimuli intensities. One person can report more pain than an-

ther because of differences in demographic variables, genetic factors,

nd psychosocial processes ( Fillingim, 2017 ; Woo and Wager, 2016 ).

or example, individual differences in subjective pain reports might re-

ect communicative bias, such as "stoics" vs. "communicators." Mean-

hile, the NPS responses might vary due to individual differences

n task-related head movement ( Engelhardt et al., 2017 ), respiration

 Chang and Glover, 2009 ; Power et al., 2019 ), heart rate ( Chang et al.,

009 ), BOLD magnitude ( Levin et al., 2001 ) and inter-individual varia-

ion in brain bases for pain reports ( Reddan and Wager, 2018 ). The com-

ination of strong within-person correlations and only modest between-
9 
erson correlations between the NPS and pain reports indicates that the

PS is not a surrogate for individual differences in pain reports. Instead,

he NPS as an objective biological target could be useful for measuring

ain in combination with subjective pain reports. For example, consider

 clinical trial testing a new drug of analgesic, the investigators might

ant to know how the drug works independent of placebo effects, and

ossibly demonstrate brain penetrance and efficacy of the drug in affect-

ng nociceptive pain-related systems ( Duff et al., 2015 ). The NPS could

e used to confirm these properties and may be particularly useful for

oing so when self-reports are suspected to be influenced by placebo

ffects on systems (e.g., decision-making systems) other than those tar-

eted by the drug ( Tuttle et al., 2015 ; Zunhammer et al., 2018 ). 

The effect sizes of between-person correlations should be interpreted

ith caution when estimated with a typical-sized neuroimaging sample

median N = 25). An advantage of assessing correlations across samples

s that it provides a better estimate of the average correlation across

tudies, and its statistical significance, than small (and under-powered)

ndividual studies. We did find a significant, moderately sized correla-

ion between NPS and pain reports across studies ( d = 0.49, r = 0.20).

nly Study 4, with the smallest sample size ( N = 17), showed a signifi-

ant between-person correlation on its own ( r = 0.74). However, we note

hat we cannot tell definitively whether some studies have significantly

igher correlations than others, and the average effect size for between-

erson correlations ( d = 0.49) is the best current estimate across studies.

One important question is whether the high correlation found

n Study 4 is an overestimate due to the small sample size.

arek et al. (2020) found that estimating between-person correlations

ith small sample sizes leads to large sampling variability. Selection bi-

ses operate on this variability at both the region (feature) and study
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publication) level to inflate post hoc correlations estimates in reported

ffects (which are necessarily the largest; this is also illustrated in

eddan et al., 2017 JAMA Psychiatry). More than 2000 participants

ere recommended for stable between-person correlation estimation,

hough such sample sizes are difficult to obtain in novel exploratory

tudies. In the current paper, the sample sizes in individual studies were

ot large enough ( N < = 120) provide a stable estimation of the between-

erson correlations between the NPS and pain reports (i.e., sampling

ariability is substantial at this sample size). However, the present study

oes not suffer from the selection bias issues that would lead to inflated

ost hoc correlations for two reasons: (1) we tested a single a priori mea-

ure (the NPS), eliminating selection bias at the feature-selection (e.g.,

egion-selection) level, and (2) we report correlations in all datasets

ested, precluding a study-level selection bias. Also, importantly, the

tudies in our sample were not selectively published based on between-

articipant correlations (which were never the principal focus of the

riginal papers). 

Both the NPS (ICC = 0.73 - 0.91) and pain reports (ICC = 0.85 -

.96) showed excellent short-term (i.e., within one-day) test-retest re-

iability. The higher reliabilities of the pain reports than the NPS re-

ponses were not due to larger inter-individual variances of the pain

eports than the NPS responses (see Supplementary Result S1 and Fig-

re S4). Test-retest reliability of pain reports has been extensively ex-

mined in previous pain-related studies that showed similar ICC val-

es range from 0.75 - 0.96 ( Jackson et al., 2020 ; Letzen et al., 2014 ,

016; Upadhyay et al., 2015 ). Previous studies have examined the

est-retest reliability of univariate brain responses to pain and showed

idely varied ICCs in pain-related ROIs (0.32 - 0.88; Letzen et al., 2014 ;

uiton et al., 2014 ; Upadhyay et al., 2015 ), significantly activated clus-

ers (0.33 - 0.74; Jackson et al., 2020 ) and functional connectivities

 − 0.17 - 0.77; Letzen et al., 2016 ). Compared with the previous uni-

ariate brain measures of pain, the NPS showed consistently high per-

ormance of short-term test-retest reliability across eight studies. It is

oteworthy that although the short-term test-retest reliability is mathe-

atically identical to the internal consistency reliability, they are con-

eptually different. Internal consistency measures how consistently a

et of items, e.g., voxels in NPS, measures a particular construct, e.g.,

ain ( Drost, 2011 ). At the same time, the short-term test-retest reliabil-

ty characterizes the short-term temporal stability of measurement, e.g.,

he NPS response measured within a session ( Drost, 2011 ). High values

f internal consistency are not always desirable and could point to the

edundancy of items ( Streiner, 2003 ), while high test-retest reliability

alues are a desirable feature given that the constructs being measured

re stable. 

To test whether the NPS measure was stable across longer time

cales, we examined two studies with 5-day and one-month intervals be-

ween sessions. We found that the NPS had high performance in longer-

erm test-retest reliability when evaluated with sufficient data per per-

on. In our estimation, more than 60 trials per condition were required

n average to achieve excellent test-retest reliability, though this was

arely done in practice ( Chen et al., 2021 ; Dang et al., 2020 ; Rouder and

aaf, 2019 ). Recent studies also showed that to improve the reliabil-

ty of the traditional univariate measures, having sufficient trials per

erson is more important than having a large sample size ( Nee, 2019 ;

urner et al., 2018 ). However, when estimating the reliability of the uni-

ariate analyses (e.g., voxel-level), researchers usually use the thresh-

lded brain maps and define the replication with some arbitrary stan-

ards (e.g., more than half of voxels in the cluster survived; Nee, 2019 ).

he threshold to correct the multiple comparisons reduces power dra-

atically ( Woo et al., 2014 ). Furthermore, the difficulty of defining a

eplication effect also brings uncertainty to the reliability estimation.

y contrast, when estimating the reliability of the multivariate pattern

ignatures, such as the NPS, we computed a single scalar value for each

rain map, avoiding the multiple comparison correction and improving

he power. The multivariate pattern signatures can also specify a precise
t  

10 
et of voxels and the topography of the relative expected activity levels

cross voxels, providing a basis for exact testing reliability. 

Besides the number of trials per condition, we also found that reli-

bility was improved with higher stimulus intensity (e.g., temperature)

nd when computing the [Pain > Baseline] contrast, rather than [High

ain > Low Pain] contrast (see Fig. 2 and Fig. 3 (B)). In both these cases,

 stronger fMRI contrast is present, leading to greater reliability. Ad-

itionally, the [Pain > Baseline] contrast includes non-specific brain

esponses to salient somatosensory stimuli, which likely also enhances

eliability. Compared with high-temperature stimuli, low-temperature

timuli served as a control condition that activates non-nociceptive so-

atosensory pathways. The significant drop in reliability for [High vs.

ow intensity] may suggest that part of what drives the NPS response

hen compared with rest is non-nociceptive somatosensory processes.

owever, the NPS has been found to have little temperature-related

ariability in the non-painful range ( Wager et al., 2013 ). Also, relia-

ility of NPS responses to low-temperature stimuli was reduced, indi-

ating a stable nociceptive contribution. Another possibility is that the

ubtraction of a largely irrelevant, noisy variable (individual responses

o low-temperature stimulation) adds error variance that reduces reli-

bility. The (error) variance of the difference between high- and low-

emperature responses is the sum of variances of the two conditions;

hus, subtracting a variable measured with error is expected to increase

he error variability in the difference score and decrease reliability. 

In contrast to the NPS reliability, the reliability of the pain reports

as less influenced by the trial number per condition, stimuli intensi-

ies, and contrast types (see Fig. 2 ). On average, the reliability of the

ain reports achieved an excellent level with even one trial. While the

eliability of NPS responses to largely non-painful low-temperature stim-

li was reduced, pain reports were very reliable across all temperatures.

 key insight is that nociceptive and non-nociceptive touch signals are

eparable, carried by largely distinct populations of neurons, so that

hey can be selectively impaired. There is much less signal in the NPS

t non-painful stimulus intensities, and the relationship between stim-

lus intensity and NPS scores is weaker with non-painful stimulation

 Wager et al., 2013 ). Thus, the NPS is expected to both respond and be

eliable at painful stimulus intensities, but not necessarily non-painful

ntensities. In contrast, pain reports may be driven by both nociceptive

nd non-nociceptive somatosensory processes in a reliable fashion. Since

ain reports are reliable at both high- and low-temperature stimuli, it is

ot surprising to find that the contrast types had less influence on the

eliability of pain reports. The systematic differences between the NPS

nd pain reports indicated that they reflect different mixtures of under-

ying processes, further supporting the conclusion that the NPS is not

imply a surrogate for pain reports. 

The complete NPS performance was better than constituent local

rain regions for both effect size and test-retest reliability. This finding is

onsistent with the argument that pain is encoded in distributed brain

etworks instead of a specific and isolated brain region ( Petre et al.,

020 ; Woo and Wager, 2016 ). Interestingly, the six regions (i.e., bilat-

ral insula, right dorsal posterior insula, aMCC, right S2, and right tha-

amus) with relatively larger effect sizes and reliabilities were the likely

argets of ascending nociceptive afferents and activated in response to

ain stimuli. Other local regions deactivated with pain and are not direct

argets of nociceptive afferents have smaller effect sizes and reliabilities

 Roy et al., 2012 , 2014). The reliabilities of multivariate patterns of ROIs

ere heterogeneous (i.e., ICCs range from poor to excellent), similar

o previous findings of pain-related ROIs using the univariate analyses

 Letzen et al., 2014 ; Quiton et al., 2014 ; Upadhyay et al., 2015 ). In con-

rast, the reliabilities of the complete NPS were more homogeneous and

ll ranged from good to excellent level across multiple diverse studies. 

The current study tests a large number of studies that are diverse

n several aspects. Firstly, most of the studies contain some cognitive

anipulations along with the painful stimuli, such as cognitive self-

egulation intervention to increase or decrease pain ( Woo et al., 2015 ),

he combination of painful stimuli with visual or auditory cues for differ-
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nt pain intensities ( Atlas et al., 2010 ; Chang et al., 2015 ; Jepma et al.,

018 ; Roy et al., 2014 ), placebo manipulation ( Roy et al., 2014 ). Sec-

ndly, the pain stimuli were applied to different body positions, includ-

ng arm, foot, leg, and thumbnail, which were supposed to have different

ensitivity to pain ( Alburquerque-Sendín et al., 2018 ). Thirdly, the in-

ensities of pain stimuli were largely varied regarding the temperature

44.3 - 50 °C) and duration (1.85 - 12.5 s). Lastly, the preprocessing

ipelines and general linear models were diverse and maintained the

ame with the origin studies. This will likely reflect the variations of data

nalyses in the literatures. The diversities of the studies further support

he generalizability of our findings about the measurement properties

f the NPS and pain reports. 

The participants in these studies were mainly young and healthy par-

icipants, with only one study testing participants with chronic back pain

i.e., study 10). The reliabilities of the NPS and pain reports in Study 10

ere lower overall compared with Studies 1–9. The reliabilities of the

PS in the psychotherapy and placebo groups were lower than the con-

rol group numerically, though they were not significantly different from

ach other (see Table S3). The psychotherapy and placebo treatment tar-

eted chronic back pain, while the fMRI task evoked thumb pain. The

hronic back pain was more associated with activity in the affective and

otivational systems tied to avoidance and less closely tied to systems

ncoding nociceptive input, such as the NPS ( Ashar et al., 2021 ). Psy-

hotherapy and placebo treatments may change brain processing of the

ffective and motivational systems of pain, and these changes introduce

nother source of variance, leading to lower test-retest reliability. We

eed further research to test the measurement properties of the NPS

nd subjective pain reports across more diverse participant samples, in-

luding clinical populations ( Herr et al., 2011 ; Voepel-Lewis et al., 2010 ;

alton et al., 2011 ). 

This paper focuses on the NPS because it has been one of the most

xtensively studied brain signatures for its validity and specificity in

he pain domain ( Chang et al., 2015 ; Krishnan et al., 2016 ; Ma et al.,

016 ; Van Oudenhove et al., 2020 ; Wager et al., 2013 ). Previous stud-

es showed potential external validity of the NPS in clinical applications

 Wager et al., 2013 ; López-Solà et al., 2017 ; McDermott et al., 2019 ;

eiber et al., 2019). Our findings suggested that trial numbers, con-

rast types, and stimuli intensities should be considered when designing

he NPS measurement in clinical applications. There are still several

hallenges to extend the current findings to clinical measurement. (1)

he NPS responses in the current paper were elicited by experimen-

ally evoked pain, which might differ from clinical pain experience. The

erformance of the effect sizes and reliabilities of the NPS could be

nfluenced by different types or aspects of clinical pain and need fur-

her research (Weiber et al., 2019). (2) The NPS’s measurement prop-

rties have been primarily examined in healthy participants. Brain fea-

ures related to clinical pain may be different and more heterogeneous

 Ashar et al., 2021 ; Hashmi et al., 2013 ; Kutch et al., 2017 ; López-Solà

t al., 2017 ; Tu et al., 2019 ). The tests in the current study characteriz-

ng the reliability, within-person, and between-person variances related

o pain reports could be applied to any neuromarker, including other

ain-related patterns ( Brown et al., 2011 ; Geuter et al., 2020 ; Kucyi and

avis, 2015 ; Kutch et al., 2017 ; López-Solà et al., 2017 ; Marquand et al.,

010 ; Woo et al., 2017 ). Some other pain signatures possibly could have

etter performance in measurement properties than the NPS in different

linical populations. 

Our study shows that it is crucial to characterize individual differ-

nces across studies and contexts. The correlation with individual differ-

nces in pain reports may vary across different experimental instructions

nd populations. For example, in study 4, we had a selected university

opulation pre-screened for reliable pain reports and pre-calibrated for

timuli intensities and ended up with a very large effect in the between-

erson level correlation between the NPS and pain reports. The pre-

alibration procedure provides people with more experience using the

ating scale and calibrating their scale usage as they get a sense of the

ynamic range of the stimuli. With little or no calibration procedure,
11 
ubjective reports could be biased by anxiety or novelty effects, and/or

ubject to an initial elevation bias ( Shrout et al., 2018 ). For studies using

xed temperatures, a restricted temperature range could in principle re-

uce reliability. If all temperatures are the same across individuals, then

timulus intensity-related variance will not drive individual differences,

nly differences in endogenous sensitivity and state effects to which the

PS appears to be largely insensitive (including expectations and biases

elated to relative judgments compared with previous stimuli, which

ary trial to trial). We do not have sufficient data to directly compare

he effects of calibration and training procedures on brain-pain correla-

ions, but this is an important topic for future studies. 

In sum, we find that both the NPS and pain reports have excellent

est-retest reliability in a large sample of participants with diverse study

rocedures. As a measure of individual differences in pain sensitivity,

he NPS is only modestly related to pain reports, suggesting that the

PS is not as useful as a surrogate measure of pain report. In contrast,

he NPS could serve as an objective biological target to measure physio-

ogical contributors to pain, in combination with subjective pain reports

r as a biological target in its own right. In the future, other multivari-

te brain patterns will need to be tested before used as translational

iomarkers. Our study provides a blueprint for future studies perform-

ng such measurement properties testing and suggests factors that could

mprove test-retest reliability in future research. 
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