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A B S T R A C T

Hypothesis testing in neuroimaging studies relies heavily on treating named anatomical regions (e.g., “the
amygdala”) as unitary entities. Though data collection and analyses are conducted at the voxel level, inferences
are often based on anatomical regions. The discrepancy between the unit of analysis and the unit of inference
leads to ambiguity and flexibility in analyses that can create a false sense of reproducibility. For example, hy-
pothesizing effects on “amygdala activity” does not provide a falsifiable and reproducible definition of precisely
which voxels or which patterns of activation should be observed. Rather, it comprises a large number of un-
specified sub-hypotheses, leaving room for flexible interpretation of findings, which we refer to as “model degrees
of freedom.” From a survey of 135 functional Magnetic Resonance Imaging studies in which researchers claimed
replications of previous findings, we found that 42.2% of the studies did not report any quantitative evidence for
replication such as activation peaks. Only 14.1% of the papers used exact coordinate-based or a priori pattern-
based models. Of the studies that reported peak information, 42.9% of the ‘replicated’ findings had peak co-
ordinates more than 15mm away from the ‘original’ findings, suggesting that different brain locations were
activated, even when studies claimed to replicate prior results. To reduce the flexible and qualitative region-level
tests in neuroimaging studies, we recommend adopting quantitative spatial models and tests to assess the spatial
reproducibility of findings. Techniques reviewed here include permutation tests on peak distance, Bayesian
MANOVA, and a priori multivariate pattern-based models. These practices will help researchers to establish
precise and falsifiable spatial hypotheses, promoting a cumulative science of neuroimaging.
1. Introduction

Along with other fields (Baker, 2016; Collaboration, 2015; Hutson,
2018; Ioannidis, 2005), human neuroscience—and functional Magnetic
Resonance Imaging (fMRI) in particular—has been facing a replication
crisis. A meta-analysis in 2009 estimated the false positive rates in neu-
roimaging studies to be up to 40% (Wager et al., 2009). Another recent
study suggested that more than 50% of neuroimaging findings are likely
to be false positives (Szucs and Ioannidis, 2017). To resolve the current
replication crisis in neuroimaging, many researchers have discussed the
problems related to small sample size, low statistical power, publication
bias, data sharing, and p-hacking (Button et al., 2013; Cremers et al.,
2017; Munaf�o et al., 2017; Nord et al., 2017; Pernet and Poline, 2015;
Reddan et al., 2017; Szucs and Ioannidis, 2017; Turner et al., 2018).
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However, there is an additional important issue related to our common
practice in neuroimaging studies—the pervasive practice of presenting
hypotheses and research findings in terms of gross anatomical region
descriptors—that results in substantial flexibility in testing hypotheses.
The problem of flexibility in data collection and analysis have been dis-
cussed in other contexts (e.g., researcher degrees of freedom; Simmons
et al., 2011), and here we extend these discussions to neuroimaging
studies, focusing on spatial models.

In neuroimaging studies, gross anatomical region-level descriptors
are commonly used to describe hypotheses and compare current findings
with previous ones. For example, we can easily find the following
statements in neuroimaging studies: “We hypothesize that [task A] would
activate [region X],” or “We replicated a previous study in which [region
Y] was associated with the cognitive [function B].” The problem is that
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gross anatomical regions, such as amygdala or anterior cingulate cortex,
do not have exact voxel-level definitions about their locations and usually
contain more than 1000 voxels (Woo et al., 2014b). There could be tens
of thousands of possible patterns that constitute “activation of” a single
region. Therefore, hypotheses based on gross anatomical regions sub-
sume thousands of possible ways of finding a positive effect. This permits
a high degree of flexibility in determining what can count as a positive
finding, which we refer to as “model degrees of freedom.” Unfortunately,
current standard mapping approaches and major software packages do
not provide any analysis methods to explicitly test which locations and
patterns of voxel-level activation should be observed. Without
voxel-level specifications and tests of topographical information of acti-
vation (e.g., locations and patterns), most hypotheses in existing neuro-
imaging studies cannot be prevented from being qualitative and
exploratory (or hypothesis-generating; Ioannidis, 2005), even though
they seem quantitative and confirmatory on the surface. Qualitative and
exploratory hypotheses render research findings unfalsifiable, resulting
in high false positive rates (Simmons et al., 2011).

The larger the hypothesized region, the worse the problem of model
flexibility becomes. For example, as previously shown in Woo et al.
(2014b), cluster extent-based thresholding often provides large clusters
that cover multiple anatomical brain regions (e.g., Fig. 1B of Woo et al.,
2014b showed an example result in which one cluster contained more
than 11 distinct anatomical regions). However, the cluster extent
thresholding only tells us that there is “at least one non-null voxel
somewhere in the cluster,” which may not be falsifiable at all for large
clusters, though the hypotheses could be highly reproducible. The key
issue here is low spatial specificity of an implicit spatial model—i.e., poor
localization ability and resulting lack of confidence in which brain
structure(s) are really activated. It is understandable that researchers
prefer methods with high spatial sensitivity to ones with high spatial
specificity because sensitive methods can provide better-looking results.
Fig. 1. Issues in testing replication using region-level and coordinate-based spa
emotions (Ashar et al., 2017; Lindquist et al., 2012). The peak coordinates shown
negative emotions, and we only included the studies that reported peak coordinates o
make it easy to find previous studies that contain peak coordinates near their current
as replications. (B) An illustration of the issues related to using region-level hypothese
Woo et al., 2014a) that includes somatic pain and social rejection tasks (For more det
we divided the data into two sets while keeping their temporal order of data collection
a replication study (n¼ 29). The figure provides both region-level evidence (orang
region-level and voxel-level evidence can provide opposite conclusions about the re
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In addition, defining exact locations across brains is very challenging.
The sizes and shapes of brain regions vary across participants, and
registration methods are far from perfect. Region- and cluster-level hy-
potheses can provide a way to work around such challenging task. A
limitation with these hypotheses, however, is that they would allow two
very distinct maps to be concluded as replications of one another; for
example, two maps may have very distinct patterns of activity or have
peak activations in the opposite ends of a large brain structure (e.g., the
anterior hippocampus bordering on the amygdala vs. the posterior hip-
pocampus centimeters away, bordering on the caudate tail). Therefore,
we need methods to quantify whether two studies activate similar loca-
tions or produce similar maps.

A corollary effect of using region- or cluster-based spatial hypotheses
is low psychological specificity. One brain region (or even one voxel)
typically contains multiple subpopulations of neurons that are function-
ally distinct (Ito et al., 2003; Kvitsiani et al., 2013; Park et al., 2017) and
thus many different tasks and mental processes can activate the same
brain region. Therefore, spatial models based on gross anatomical re-
gions cannot achieve a fine-grained understanding of brain-to-function
relationships without further specification. For example, the dorsal
anterior cingulate cortex (dACC; or anterior midcingulate cortex) is one
of the most frequently reported brain regions in the literature (Behrens
et al., 2013) with its base rate of significant activation exceeding 20%
across tasks and paper topics in human neuroimaging studies (Wager
et al., 2016; Yarkoni et al., 2011). It is recruited by many different tasks
and mental events including emotional pictures (Ochsner and Gross,
2005), painful stimuli (Wager et al., 2013), emotional pain (Eisenberger
et al., 2003), conflict monitoring (Botvinick et al., 1999), prediction error
(Hayden et al., 2011), decision making (Kolling et al., 2016), and many
others (cf. also see Kragel et al., 2018a; Shackman et al., 2011). Even if
these processes activate different subsets of neurons within the dACC and
can be distinguished with multivariate patterns of fMRI activity (Kragel
tial models. (A) Peak coordinates from a meta-analysis for positive and negative
here are 856 peaks from 68 fMRI studies that examined aspects of positive or
n the MNI standard space. The peaks widely distributed all over the whole brain
findings anywhere in the brain, allowing a post-hoc justification of their findings
s in neuroimaging studies. For the illustration, we used an fMRI dataset (N¼ 59;
ails about the dataset, see Methods). To create the original and replication data,
. Then, we used the first dataset as an original study (n¼ 30) and the other set as
e/red) and voxel-level evidence (violet) for replication and highlights that the
plication.
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et al., 2018a; Krishnan et al., 2016; Woo et al., 2014a), they may all still
produce activity in the dACC overall. Therefore, even if an a priori hy-
pothesis based on the whole dACC region (e.g., “dACC activation”) is
highly reproducible, it is unlikely to provide specific and useful infor-
mation about brain-to-function mapping. For these reasons, hypotheses
based on gross anatomical region descriptors cannot provide a robust
foundation for cumulative and reproducible neuroscience; rather, they
obscure functional differences and limit their interpretability and
falsifiability.

Coordinate-based models, such as a direct comparison of peak co-
ordinates or spherical regions-of-interest around peak coordinates from
previous studies, can potentially reduce the level of flexibility in assess-
ing hypotheses and replications by providing tests with better precision
compared to region-level models (though they do little to address the
issues of functional specificity raised above). However, there are several
fundamental limitations in this practice. First, most packages use ad hoc
algorithms for identifying peak activation locations and provide no in-
ferences about the location or location uncertainty (Kang et al., 2011a;
Samartsidis et al., 2017). Most researchers do not specify spatial hy-
potheses about where brain activations should lie and how uncertain
those locations are. This makes testing the ‘replication’ of a hypothesis
that was not specified in the original study a somewhat ambiguous
venture. In addition, previous studies have shown that peak locations
vary widely across different tasks, individuals, and analysis pipelines
(Carp, 2012; Kober et al., 2008). For example, peak activations from
studies on emotional experience are highly distributed across multiple
brain regions (Fig. 1A; Kober et al., 2008). Second, coordinate-based
models tell us nothing about the patterns of brain activity around the
peaks. Two studies with exactly same peak coordinates can have very
different patterns of brain activity surrounding those peaks. Third,
group-level analyses in fMRI studies usually produce smooth and diffuse
brain activation maps (Cremers et al., 2017), which make it intrinsically
difficult to locate peak coordinates with certainty and render the
coordinate-based models less meaningful. Finally, the use of peak co-
ordinates also provides model flexibility. Currently, there is no consensus
on how close peak coordinates from two studies should be in order to
count as replicates of one another. With the widely spread distribution of
peak activations (Fig. 1A), researchers can easily find previous studies
that contain peak coordinates near their current peak activation anywhere
in the brain, allowing a spurious, post-hoc justification of ‘replicating
previous work’. For these reasons, coordinate-based models also cannot
provide a solid foundation for the assessment of a priori hypothesis and
replication.

Multivariate pattern-based models and tests provide a powerful
alternative to region- and coordinate-based approaches. Multivariate
pattern-based models are increasingly used in fMRI studies to predict
behaviors and task parameters due to its high predictive power based on
rich information distributed across multiple voxels and regions.
Modeling multivariate pattern information is analogous to analysing
neural population codes (Kriegeskorte, 2009). A number of studies show
convincingly that multivariate pattern-based analysis can capture
fine-grained functional information of the brain activity (Alink et al.,
2013; Kamitani and Tong, 2005; Shmuel et al., 2010; Swisher et al.,
2010) and can more accurately predict perceptions and behaviors than
univariate brain maps (Peelen et al., 2006; Woo et al., 2017b; Woo et al.,
2014a). More importantly, the pattern-based approach has a potential to
provide a precise and quantitative voxel-level specification of the acti-
vation locations and the relative levels of activity patterns. For example, a
predictive modeling approach (Kragel et al., 2018b; Woo et al., 2017a)
aims to develop pattern-based models that are predictive of mental or
behavioral outcomes across individuals. These pattern-based models
(a.k.a. brain “signatures” [Wager et al., 2013] or “neuromarkers”
[Gabrieli et al., 2015]) precisely specify voxel-level weights and define
how to integrate new fMRI data from a new individual to produce a single
prediction about the outcome. The pattern-based models can serve as a
priori voxel-level, quantitative, and falsifiable spatial models for testing
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replications on new brain data from new individuals. This type of
multivariate pattern-based models ensures high statistical power because
it does not involve any further optimization or multiple comparisons
(Gilron et al., 2017; Woo et al., 2017a). It also can remove any wiggle
room for further interpretation or redefinition of the models by elimi-
nating any possibility of exploiting ways to find a positive effect.

In the current study, we first illustrate the problems of using gross
anatomical region-level descriptors as a priori hypotheses with an fMRI
dataset from a study comparing somatic pain and social rejection
(N¼ 59) (Woo et al., 2014a), highlighting that two very distinct maps of
voxel-level tests can be concluded as being replicates of one another
based on region-level inferences. Second, from a survey of 135 fMRI
studies that claimed a replication of previous findings, we show that a
majority of the current fMRI studies (85.3%) rely heavily on region-level
hypotheses, and a high proportion of those studies (48.7%) provide no
quantitative evidence (e.g., peak coordinates) at all for replication. In
addition, when we compared the peak coordinates between the original
and ‘replication’ studies, 42.9% of ‘replicated’ findings had peak co-
ordinates more than 15mm away. Thus, the activation maps that have
been counted as ‘replications’ are actually quite different from the orig-
inal results they claimed to replicate. Third, we highlight the limitation of
coordinate-based tests through simulations showing that peak co-
ordinates cannot provide a reliable and stable measure for the underlying
patterns of brain activity. The exactly same underlying activation pattern
can yield multiple different peaks when noise is added, and two maps
that have similar peak coordinates can have distinct activation patterns.
Finally, we propose some recommendations for more quantitative testing
of hypothesis and replication in neuroimaging studies: (1) Provide
quantitative evidence when claiming replications and (2) use explicit and
quantitative spatial models and tests, such as permutation tests on peak
distance and a priori multivariate pattern-based models. These will help
to build testable spatial models in neuroimaging and promote the cu-
mulative science of neuroimaging.

2. Methods

2.1. Illustration and simulations

To illustrate potential pitfalls of using region-level spatial models, we
used an fMRI dataset (N¼ 59) from a previous study (Woo et al., 2014a).
The experiment consisted of two tasks: First, in the somatic pain task,
participants experienced painful heat (pain condition) or non-painful
warmth (warmth condition). In the social rejection task, participants
viewed their ex-partner's photos (rejection condition) or their friends'
photos (friend condition). After we obtained the first-level contrast maps
for [pain vs. warmth] and [rejection vs friend] for all subjects, we divided
the data into two groups of sequentially acquired participants: An ‘orig-
inal cohort’ of 30 subjects, and a subsequent ‘replication cohort’ of 29
subjects. We compared their group-level contrast maps for these two
cohorts using dACC (anterior midcingulate cortex in particular) as a
region-of-interest (ROI). We used the dACC ROI mask from the previous
study (Woo et al., 2014a) that showed overlapping activation between
the pain and rejection conditions. We additionally smoothed the dACC
mask with a 0.5-mm FWHM Gaussian kernel to make the mask large
enough for analyzing pattern similarity. We chose to use the ROI test
approach to demonstrate the potential pitfalls of the most common
approach in the replication studies. We also used the same dataset for a
simulation, in which we randomly split the fMRI data into halves (n¼ 30
vs. n¼ 29) 10,000 times and examined whether closely located peak
coordinates ensure a high degree of pattern similarity between two
group-level maps (Fig. 4). Lastly, the same data were used to provide
some examples of the recommended methods (Fig. 5).

We also conducted another simulation to examine the reliability of
peak distance and pattern correlation as a similarity measure of two
maps. As shown in Fig. 3A, we first created a pair of 100 � 100 matrices
(original and replication data) by adding random noise to the underlying
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ground truth signal pattern (the activity value ranged from 0.2 to 2.0).
We combined the signal and the noise to create different levels of signal-
to-noise ratio ranging from 0.1 to 1.1. In more detail, the noise was added
by adding Gaussian noise with mean¼ 0 and standard devia-
tion¼maximum signal intensity over the ground truth pattern (i.e., 2.0)
divided by the desired SNR value. For example, if the SNR was 0.5, the
noise was created with random numbers from normal distribution with
mean¼ 0, standard deviation¼ 4.0; Matlab example, noise¼ normrnd
(0,2/snr,100,100). After we smoothed the data, peak distance and
pattern correlation were calculated. We repeated this process 10,000
times. Fig. 3B shows an example data from one iteration. You can see the
simulation code at https://github.com/cocoanlab/falsepositiveneuroima
ging/blob/master/figure3.m.

2.2. Survey

We surveyed 135 fMRI papers that contain claims of replicating
previous findings published between January 2010 and April 2017. To
find the papers, we used the following search terms for PubMed database:
“fMRI” or “functional magnetic resonance imaging” in the Title/Abstract;
“replicate”, “replication”, “replicated”, or “replicates” in the All Fields.
We initially acquired 482 papers, which were then filtered with the
following exclusion criteria: (1) articles that replicated behavioral results
or tasks; (2) articles that used other imaging modalities, such as EEG,
PET, or fNIRS; (3) articles that simply mentioned replication (e.g., as a
future direction); (4) articles that replicated connectivity studies; (5)
review articles; (6) genetic studies. The final number of selected papers
was 135.

The 135 replication studies were then categorized into the following
seven groups: 1) No specific report: studies that contain no specific
spatial information (e.g., peak coordinates or image files to compare) to
support their claims of replication. 2) Qualitative region-level compari-
sons with no report of peak coordinates: studies that used the whole brain
search and suggested replication based on qualitative region-level com-
parisons and did not report peak coordinates. 3) Qualitative region-level
comparisons with peak coordinate information. 4) Predefined anatom-
ical ROI test with no report of peak coordinates: studies that used ROIs as
prior models and did not report peak coordinates in the paper. 5) Pre-
defined anatomical ROI test with peak coordinate information. 6)
Coordinate-based ROI test: studies that used coordinate-based prior
models (e.g., 5-mm sphere around a peak coordinate from a previous
study). 7) Pattern-based prior models: studies that used multivariate
pattern-based prior models.

We also recorded peak coordinates from replication studies ðxrep; yrep;
zrepÞ if the peak coordinate information was available. We then searched
through their original studies that were referenced in the replication
studies and extracted peak coordinate information from the original
studies if the information was available ðxorig ;yorig ;zorigÞ. If the replication
cited multiple original studies, we used the peak coordinates that were
closest to those in replication studies. Thus, the coordinate distances can
be described as assessing the distance to the nearest replicate. Talairach
coordinates were converted to Montreal Neurological Institute (MNI)
coordinates using the Matlab function, tal2mni.m (Brett et al., 2001).
Next, we calculated the Euclidean distance between the peak coordinates
using the following equation:

peak distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xrep � xorig

�2 þ �
yrep � yorig

�2 þ �
zrep � zorig

�2q
:

In this manuscript, we use “locations” only in an anatomical sense, as
coordinates in standard MNI anatomical space, though in some applica-
tions locations can be defined based on brain functional properties as
well.

2.3. Recommended analysis methods

In the Discussion, we provide some recommendations to promote the
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use of quantitative and less flexible spatial models and tests, which
include permutation tests for peak distance and pattern similarity, con-
fidence region, multivariate analysis of variance (MANOVA), and
multivariate pattern-based classification method.

Permutation test for peak distance. A permutation test can be used to
compare a peak location in a new study to a fixed reference point from a
prior study, i.e., peak distance. For an example analysis, we generated a
null distribution of the peak distance between original and replication
study data by shuffling the condition labels (in this example, ‘rejection’
and ‘friend’, or ‘pain’ and ‘warmth’) within each participant. The null of
the permutation test here posits that no reliable difference exists for the
condition contrast (and therefore no reliable peak location) across sub-
jects. The permutation test procedure is as follows: (a) take a fixed peak
location from the original study, (b) obtain a peak location from a group-
level contrast image (e.g., ‘rejection’ vs. ‘friend’) of the replication study
and calculate the peak distance between the original and replication
studies, (c) randomly shuffle the condition labels of the replication study
(in this case, ‘rejection’ and ‘friend’) and calculate peak distance for each
iteration, (d) repeat (c) for multiple iterations (in this example, 10,000
times), and (e) calculate the probability of observing the peak distance
between the original and replication studies given the null distribution of
permuted peak distance. If the probability of observing the current peak
distance is small enough (e.g., p< 0.05), we reject the null hypothesis
and conclude that the original and replication studies have peak locations
significantly close to each other.

Permutation test for pattern similarity. A permutation test can also be
used to compare an activation map from a new study to a fixed activation
pattern map from a prior study. The null of this permutation test posits
that there is no reliable difference between conditions (and therefore no
similarity between contrast maps) across subjects. As a measure of the
spatial pattern similarity of two maps, we used Pearson's correlation (r):

r ¼
Pn

i¼1ðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðxi � xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðyi � yÞ2

q
where n is the number of voxels included in the map, xi and yi are the
voxel-level data vectors for two maps (elements are voxels), and x and y
are the mean of the voxel-level data vectors. The permutation test pro-
cedure for pattern similarity is similar to the one for peak distance: (a)
take a fixed contrast map (e.g., ‘rejection’ vs. ‘friend’) from an original
study, (b) obtain a new group-level contrast image from a replication
study and calculate the pattern similarity between those two maps, (c)
randomly shuffle the condition labels for the replication study (in this
case, ‘rejection’ and ‘friend’) and calculate pattern similarity for each
iteration, (d) repeat (c) for multiple iterations (e.g., 10,000 times), and
(e) calculate the probability of observing the pattern similarity between
the original and replication studies given the null distribution of
permuted pattern similarity. If the probability of observing the current
pattern similarity is small enough (e.g., p< 0.05), we reject the null
hypothesis and conclude that the original and replication studies have
significantly similar activation patterns.

Confidence region. To construct a confidence region based on multiple
peak coordinates, we used the method described in Johnson andWichern
(2007; p. 220). The axes of the confidence region in p-dimensional space
are defined as:

�
ffiffiffiffi
λi

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðn� 1Þ
nðn� pÞFp;n�pðαÞ

s
ei; where i ¼ 1; 2; :::; p

where n is the number of peak coordinates, and p is the number of di-
mensions, which is three (i.e., x, y, z) in our case, and i is a particular
dimension. Fp; n�pðαÞ is the upper (100 α)th percentile of the Fp; n�p dis-
tribution. In the example case, we construct a 95% confidence region
with p¼ 3, and therefore the term should be F3; n�3ð0:95Þ. λi and ei are
the eigenvalues and eigenvectors of the sample covariance matrix S,

https://github.com/cocoanlab/falsepositiveneuroimaging/blob/master/figure3.m
https://github.com/cocoanlab/falsepositiveneuroimaging/blob/master/figure3.m
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respectively, and S is defined by

S ¼ 1
ðn� 1Þ

Xn

j¼1

�
xj � x

��
xj � x

�
'

where x1; x2; …; xn are the sample observations, and x ¼ 1
n

Pn
j¼1

xj.

This has been implemented in the following Matlab functions, con-
f_region.m and confidence_volume.m (which are available at https://gith
ub.com/canlab/CanlabCore and https://github.com/canlab/Canla
b_MKDA_MetaAnalysis, respectively). With these functions, one can
draw a confidence region using the following lines of Matlab code:

results¼ confidence_volume (xyz);

surf (results.xP, results.yP, results.zP);

Bayes Factor calculation for multivariate analysis of variance (MAN-
OVA).With MANOVA, we can test whether two independent sets of peak
coordinates are from the same or different distributions by comparing
their multivariate means on the x, y, z space. The null hypothesis of the
MANOVA test is that two sets of peak activations are from the same
distribution, and it can be rejected when the two sets of peak coordinates
are located separately. In the context of testing replication, a Bayes factor
provides better tests for confirming replication because it can quantify
the likelihood of a null hypothesis (i.e., replication success) against an
alternative hypothesis (i.e., replication failure) (Rouder et al., 2012;
Rouder et al., 2009). We implemented the Bayesian MANOVA and Bayes
factor calculation using the BRMS package in R (Bürkner, 2017) and also
made a website to provide a web-based Bayes factor calculation at http://
cocoanlab.skku.edu/bayes_factor_bayesian_manova/. For the accurate
calculation of Bayes factors, it is crucial to use the correct priors, and in
the implementation, we used weakly-informative priors recommended
by Gelman and Hill (2007) Chapters 13 and 17 and STAN manual
[v2.17.0] 9.13 and 9.15 (Carpenter et al., 2017). The R-code for the
bayes factor calculation is available at https://github.com/cocoan
lab/falsepositiveneuroimaging. In this analysis, higher Bayes factors in
favor of null hypothesis (BF01) provides supporting evidence for
replication.

Multivariate pattern-based classification. If an a priori pattern-based
model is available, one can calculate the pattern expression values
using dot-product, but other similarity metric (e.g., Pearson's correlation,
Spearman correlation, cosine similarity, etc.) can also be used:

Pattern expression ¼ w⇀ � x⇀ ¼
Xn

i¼1

wixi

where n is the number of voxels within the pattern-based model, w is the
voxel-level predictive weights, and x is the test data. An a priori pattern-

based model is composed of predictive weights (w⇀) across voxels, speci-
fying locations and patterns of activation. The weights tell us how to
integrate fMRI data into a single prediction, which then can be used for
classification tests or regression analyses. In our example analysis, we
calculated the dot product between the a priori pattern-based model for
[rejection vs. friend] and [pain vs. warmth] trained on the original data,
n¼ 30, and the test image data from the replication data, n¼ 29. Then,
we conducted a classification test on the pattern expression values with
the forced-choice test and the binomial test to determine whether the
observed accuracy is significant.

3. Results

3.1. Illustration of the issues related to region-level tests

As illustrated in Fig. 1B, when relying only on a region-level hy-
pothesis such as “significant activation within dACC,” one can easily
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conclude that the previous findings are successfully replicated even with
two very distinct activation maps at the voxel-level. For the [rejection vs.
friend] contrast, both original (n¼ 30) and replication (n¼ 29) data
contain significantly activated dACC voxels while their peaks are located
far away from each other, d¼ 43.1mm, and the patterns of activations
between two maps are uncorrelated, r¼�0.06. For the [pain vs.
warmth] contrast, two maps from the original and replication data show
peak activations that are relatively close to each other, d¼ 14.7mm, and
a high degree of pattern similarity, r¼ 0.72 (quantitative tests on these
values will be proposed in theDiscussion). If we make conclusions based
only on the region-level evidence, we should conclude that findings for
both contrasts, i.e., [rejection vs. friend] and [pain vs. warmth], are
successfully replicated, but voxel-level evidence provides a different
conclusion for the [rejection vs. friend] contrast, which is not highly
replicable at the voxel-level.

The same issue can occur when comparing two different psycholog-
ical states based on fMRI activation maps. If a researcher relies only on a
region-level test, one can conclude that social rejection and physical pain
share neural representations within the dACC based on significant acti-
vations within the region across two datasets. However, the voxel-level
examination comparing the two contrast maps (i.e., one for [rejection
vs. friend] and the other for [pain vs. warmth]) suggests a different
conclusion. In the first dataset (n¼ 30), twomaps had peaks close to each
other, d¼ 8.5mm, and similar activation patterns, r¼ 0.49, supporting
shared brain representation across rejection and pain within the dACC.
However, in the replication dataset (n¼ 29), the peaks from two maps
were located far from each other, d¼ 46.0mm, and the activation pat-
terns were negatively correlated, r¼�0.19, suggesting that pain and
rejection do not share neural representations.

3.2. Survey results

As shown in Fig. 2A, we found that a majority of the current fMRI
replication studies rely heavily on region-level assessment (qualitative
region-level comparison and predefined anatomical ROI test): 24.5% and
60.8% of the 135 surveyed studies respectively used the qualitative
region-level comparison and the predefined anatomical ROI test for the
replication assessment. Note that the currently most popular method
(60.8%) for the replication assessment is the predefined anatomical ROI
test, which might look like a positive sign for good analysis practice.
However, Fig. 2B suggests that it is not the case: The qualitative region-
level comparison and the predefined anatomical ROI test did not differ in
their peak distances between original and replication studies
(t44.8¼ 0.57, p¼ 0.569, two sample t-test), suggesting that both ap-
proaches are similarly liberal in assessing replication (see below for more
detailed comparisons).

Importantly, 42.2% of the 135 replication studies (dark red line
outside of the pie chart) did not even report peak coordinates, indicating
that these studies claimed replication without any quantitative voxel-
level evidence. 6.7% of the studies used a coordinate-based ROI test, in
which spatial hypotheses are formed using peak coordinates from pre-
vious studies, and 7.4% of the studies used a priori pattern-based models.

Fig. 2B displays distances between peak coordinates from original vs.
replication studies (peak distance) across different study categories. The
studies that used the qualitative region-level comparison and the pre-
defined anatomical ROI test showed similarly long peak distances (for the
qualitative region-level comparison studies, mean¼ 25.0mm, me-
dian¼ 15.7mm, SD¼ 23.4mm; for the predefined anatomical ROI
studies, mean¼ 22.2mm, median¼ 12.8mm, SD¼ 24.4mm). By
contrast, the coordinate-based ROI test studies fared somewhat better,
showing peak distances significantly closer than the other two study
categories (mean¼ 12.2mm, median¼ 1.7mm, SD¼ 18.1mm,
t62.7¼�2.87, p¼ 0.006, two sample t-test).

We additionally compared distributions of the peak distances across
three groups using the Kullback-Leibler (KL) divergence; lower KL
divergence indicates more similar distributions. With the probability

https://github.com/canlab/CanlabCore
https://github.com/canlab/CanlabCore
https://github.com/canlab/Canlab_MKDA_MetaAnalysis
https://github.com/canlab/Canlab_MKDA_MetaAnalysis
http://cocoanlab.skku.edu/bayes_factor_bayesian_manova/
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Fig. 2. Survey results. We surveyed 135 fMRI papers that contain claims of replicating previous findings and were published between January 2010 and April 2017.
(A) The pie chart shows the proportions of seven categories for the replication studies. The seven categories are as follows: (1) ‘No specific report’ refers to the studies
that include no specific information to support their claims of replication. (2) ‘Qualitative region-level comparison with no report of peak coordinates’ refers to the
studies that suggested replication based on qualitative region-level comparisons and did not report peak coordinates. (3) ‘Qualitative region-level comparisons with
peak coordinate information’. (4) ‘Predefined anatomical ROI test with no report of peak coordinates’ refers to the studies that used anatomical ROIs as prior models
and did not report peak coordinates in the paper. (5) ‘Predefined anatomical ROI test with peak coordinate information’. (6) ‘Coordinate-based ROI test’ refers to the
studies that used coordinate-based prior models (e.g., 5-mm sphere around a peak coordinate from a previous study). (7) ‘Pattern-based prior model’ refers to the
studies that used a priori multivariate pattern-based models. The category groups except for ‘Pattern-based prior model’ were subdivided into two groups based on
whether the study reported peak coordinates or not. (B) The box-violin plots present the distributions of peak distance (in mm) between replication and original
studies for the three study categories that reported peak coordinates. Dark purple and red lines respectively indicate the mean and median values. Studies that used
coordinate-based prior models showed significantly shorter peak distance compared to others (p< 0.05, two-sample t-test). (C) The cumulative distribution plot shows
the cumulative proportions of the peak distance values. To provide a benchmark, we used the average diameter of amygdala (16.3mm from Brabec et al., 2010). More
than 40% of the studies within the ‘qualitative region-level comparison’ (41.3%) and ‘predefined anatomical ROI test’ (48.3%) categories showed peak distances
longer than the amygdala diameter.
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density function using the bin size of 4mm, KL divergence for the
qualitative region-level comparison vs. predefined anatomical ROI
groups showed smaller KL divergence, KL¼ 3.84, than the KL divergence
for the predefined anatomical ROI vs. coordinate-based ROI groups
(KL¼ 5.47) and for the qualitative region-level vs. coordinate-based ROI
groups (KL¼ 9.13), suggesting that the difference between the qualita-
tive region-level comparison and the predefined anatomical ROI groups
was smaller than their differences with the coordinate-based ROI group.
The mean and median peak distance across all three groups were
respectively 20.8 mm and 12.8mm with standard deviation of 23.5mm.

In Fig. 2C, we used the amygdala, the average diameter of which is
16.3 mm (Brabec et al., 2010), to provide a reference point for the peak
distances of the surveyed studies. 48.3% of the qualitative region-level
comparison studies, 41.3% of the predefined anatomical ROI test
studies, and 23.5% of the coordinate-based ROI test studies (overall
39.1%) had peak distances longer than the amygdala's diameter, high-
lighting the fact that around 40% of the replication studies in the neu-
roimaging field claimed replication even with peak differences larger
than the size of amygdala.
3.3. Limitation of coordinate-based models in evaluating replications

Though assessing peak coordinates between the original vs. replica-
tion studies (e.g., peak distance) could serve as a quantitative method for
evaluating replications, peak coordinates provide a suboptimal metric, in
part because peak locations are not a measure of central tendency and
thus is a poor basis for support in the data. The simulation results shown
in Fig. 3C and Fig. 4 clearly show the limitations of using peak distance as
an evaluation method for replication.

First, peak coordinates cannot provide a reliable and stable measure
for the underlying patterns of brain activity because peaks are more
vulnerable to noise than multivariate pattern information. The exactly
same underlying ground truth activation pattern can yield multiple
different peaks when noise is added. For the simulation shown in Fig. 3,
we created a pair of matrices by combining one ground-truth activation
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pattern with different random noises at each iteration and compared two
data matrices using peak distance and pattern correlation after smooth-
ing. We combined the signal and the noise with different levels of signal-
to-noise ratio (SNR) that ranged from 0.1 to 1.1, increasing by 0.2. As
expected, the average peak distance was decreased and the pattern cor-
relation was increased as the SNR increased. However, the peak distance
values were highly variable across all levels of SNR, whereas the pattern
correlation values had much lower variance than peak distance. To
quantify this, we compared the effect sizes of SNR increases on peak
distance and pattern correlation using Cohen's d (a mean difference be-
tween two adjacent levels of SNR divided by pooled standard deviation).
Peak distance showed small effect sizes; absolute Cohen's d for the de-
creases of peak distance ranged from 0.19 to 0.23 with mean d¼ 0.21. In
contrast, pattern correlation showed large effect sizes ranging from 1.71
to 1.83 with mean d¼ 1.80.

Second, we did a simulation with real data and found that closely
located peaks cannot ensure the high degree of pattern similarity. As
shown in Fig. 4, we compared peak distance and pattern similarity within
the dACC between two group-level contrast maps for [rejection vs.
friend] constructed from 10,000 iterations of random split-half samples.
If the maps are reproducible, two contrast maps from split-half samples
should show closely located peaks (i.e., short peak distance) and high
degree of pattern similarity. The results showed that the maps for the
contrast of [rejection vs. friend] are not highly reproducible: The average
peak distance over 10,000 iterations was 27.9mm and the mean pattern
similarity was r¼�0.058. A linear regression analysis with peak distance
as a predictor and pattern correlation as an outcome showed that peak
distance was a weak, but significant, negative predictor for pattern cor-

relation (bβ¼ �0.0019, p< 0.001). However, the peak distance explained
only 2.03% variance in the pattern similarity values. In addition, the
model intercept was negative (intercept¼�0.006), suggesting that a
peak distance close to 0 cannot guarantee a positive pattern correlation.
Fig. 4B highlights an example case where the peak distance between two
half-split data was very short (d¼ 4.9mm), but still showed negative
pattern correlation (r¼�0.15). Therefore, it is possible that two brain



Fig. 3. Simulation 1. (A) To examine the reliability of peak distance and pattern correlation when comparing two simulated data with the same ground truth patterns
of signal, we created a pair of 100� 100 matrices (original and replication data) by adding random noise to the underlying ground truth signal pattern. The ground
truth pattern consists of 5� 5 patches, each of which is a 20� 20 matrix with the same activation values ranging from 0.2 to 2.0. We combined the signal and the noise
with different levels of signal-to-noise ratio ranging from 0.1 to 1.1. After smoothing, peak distance and pattern correlation between two data matrices were calculated.
We did not include two edge rows and columns when detecting peaks to reduce the edge effects due to smoothing. We repeated this process 10,000 times. (B) An
example data from one iteration. Stars indicate peak locations of the data matrices. (C) Distributions of peak distance and pattern correlation across different levels
of SNR.
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maps with very different brain activation topography can be considered
to be same if we examine only peak coordinates.

We also conducted the same simulation for the [pain vs. warmth]
contrast. As shown in the bottom panel of Fig. 4A, the [pain vs. warmth]
contrast showed a significantly lower average peak distance (6.9mm)
compared to the [rejection vs. friend] contrast (27.9mm). This suggests
that peak distance could be an adequate measure in some cases (e.g.,
when the spatial variability is low). However, the linear regression re-
sults using the simulated data for [pain vs. warmth] were quite similar to
the one for [rejection vs. friend]: Peak distance was a weak predictor of

pattern similarity, bβ ¼�0.0015 and was able to explain only 0.6%
variance in pattern similarity, supporting the idea that peak distance is
not a good predictor of pattern similarity.

4. Discussion

4.1. Region-level models allow flexibility in determining what can count as
positive findings

From the survey of 135 fMRI studies that contain claims about
replication of previous studies, we found that the currently most popular
spatial models are region-level models (85.3%; Fig. 2A). This is important
to note because, with these models, many combinations (likely thou-
sands) of different activation patterns can be interpreted as positive
findings of a region-level hypothesis, such as “amygdala activity.”
Anatomical brain regions usually contain more than 1000 voxels, and
thus the actual number of hypotheses becomes the number of possible
combinations among voxels within the regions. In other words, when we
test a hypothesis based on a gross anatomical region, we are testing not
just the “cover” hypothesis, but also a large number of unspecified
“hidden” hypotheses that can all lead to positive findings. The unspeci-
fied sub-hypotheses make the cover hypothesis less falsifiable, leading to
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false positive findings and replication failure in the long run. In addition,
it is difficult to establish sensitive and specific links between brain
measures and mental categories—a central goal of cognitive neuro-
science—without more precise specification of which voxels and patterns
(i.e., relative values across voxels) should be activated.

This concern is well supported by our survey results. The studies that
employed qualitative region-level comparisons or predefined anatomical
ROI tests showed a peak distance to the nearest claimed “replicating
finding” greater than 22.6mm on average, and around 40% of these
studies had peak distances greater than the amygdala's average diameter
(16.3mm), suggesting that region-level tests indeed allowed presenting
very different activation maps as being replicated. This was only among
studies reporting peak distances; almost half (42.2%) of the surveyed
studies did not even report quantitative voxel-level (peak or pattern)
evidence for replications.

To reduce false positives and the false sense of reproducibility in
neuroimaging studies, researchers need to develop and use formal sta-
tistical analysis methods to support quantitative and explicit spatial
models and hypotheses. These methods should provide statistical in-
ferences about where brain activations are located and how uncertain
those locations are. Then, tests of replication should be based on these
quantitative spatial models and hypotheses. We propose some specific
recommendations as a step towards developing quantitative assessment
of replications and spatial hypotheses: 1) Provide quantitative voxel-level
evidence (i.e., peak or pattern) when claiming replications and 2) use
explicit spatial models and tests. If peak locations are the only informa-
tion available, we recommend using explicit models and tests for peak
coordinates, such as permutation tests on peak distance and Bayesian
MANOVA tests on peak distributions. These could provide statistical in-
ferences about where a peak coordinate is likely to lie andwhether two or
more conditions activate same or different peak locations. However, as
we highlighted through simulations shown in Figs. 3 and 4, peak



Fig. 4. Simulation 2. (A) The histograms show the distributions of peak distance and pattern correlation within the dACC between group contrast maps from two
randomly half-split datasets using the same fMRI dataset that we used for illustration (Woo et al., 2014a). We treated the first and second sets of the half-split data as
original and replication studies, respectively. The top panel shows the results with the social rejection data, [rejection vs. friend], and the bottom panel shows the
results with the physical pain data, [pain vs. warmth]. (B) The scatterplot shows the relationship between pattern correlation (y-axis) and peak distance (x-axis) for
both datasets, red: pain vs. warmth, purple: rejection vs. friend. The reference lines are the least-square lines. The bottom panel displays an example case where the
peak distance is very short (d< 5mm), but the patterns of brain activity are distinct (r< 0), highlighting the fact that close peaks do not necessarily imply similar
patterns of brain activity.
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locations provide only a suboptimal way to evaluate replications, and
therefore spatial pattern-based analyses should be a major direction in
future replication studies. We explain each recommendation in more
detail below, summarize our recommendations in Fig. 5 and the Ap-
pendix, and describe several useful test procedures in the Methods.
4.2. Provide quantitative voxel-level evidence when claiming replications

As proposed in Fig. 5 (violet font color), one can provide voxel-level
evidence for replication using peak coordinates, confidence regions,
peak distance, pattern similarity, or pattern expression values. More de-
tails about the calculation of these values are included in theMethods. To
determine which types of voxel-level information to provide, one needs to
consider which type of spatial models is available from the original study
first. Fig. 5 provides recommendations and examples for different cases.

When one or only a small number of peak coordinates are available
from a previous study, one can provide peak distance along with indi-
vidual peak coordinates and a 95% confidence region. As our survey
results showed, the studies that used the coordinate-based ROI tests re-
ported significantly shorter peak distances than other study categories
(Fig. 2B), indicating that the coordinate-based ROI tests provide more
precise models compared to other region-level tests maybe because the
coordinate-based tests have a more limited search space than others.
However, going beyond the coordinate-based ROI tests, researchers
should be able to report and systematically compare peak coordinates
from their current study against the peaks from previous studies using
peak distance. If multiple peak coordinates are available from previous
studies (e.g., from meta-analyses or from first-level contrast maps), one
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can provide a peak distribution along with 95% confidence regions for
the previous and current studies. A confidence region from the original
study could potentially serve as a replication target, and overlapping
confidence regions can be an evidence for successful replication. How-
ever, one should interpret results with large confidence regions with
caution because large confidence regions indicate that the results are
spatially variable and have poor spatial specificity. Thus, in addition to
whether a study spatially replicates an earlier finding, the size of the
spatial confidence region and resulting implications for the precision of
localization should be an important consideration.

If unthresholded activation maps or a priori pattern-based models are
available from previous studies (e.g., from NeuroVault.org [Gorgolewski
et al., 2015]), one can use similarity metric, such as pattern similarity and
pattern expression values. This provides a quantitative way to measure
the similarity of activation patterns across voxels between an original
study and a replication study. Such measures are becoming increasingly
popular also as measures of representational similarity (Haxby et al.,
2014; Kriegeskorte and Kievit, 2013).
4.3. Use quantitative spatial models and tests for peak locations

Though peak locations have many limitations in assessing replication
(Figs. 3 and 4), researchers might have no choice other than using peak
information. In that case, we recommend using a permutation test or
Bayesian MANOVA.

First, when peak distance is used as a voxel-level evidence, one can
use a permutation test to examine whether the observed peak distance is
shorter than the null distribution of permuted peak distances under null

http://NeuroVault.org


Fig. 5. Recommendations. This figure shows our recommendations to reduce flexible and qualitative spatial tests in neuroimaging studies. We provide different
options of quantitative voxel-level evidence (violet) and test methods (green) for different types of spatial models available from previous studies (red), ranging from
(A) when only a small number of peak coordinates are available as spatial models to (B) when multiple peak coordinates are available, (C) when unthresholded maps
are available, and (D) when a priori pattern-based models are available. For more detailed explanation about each method, please refer to Methods and Discussion.
RF¼ rejection vs. friend. PW¼ pain vs. warmth. Rej¼ rejection. Fri¼ friend. H0¼ null hypothesis. HA¼ alternative hypothesis.
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hypothesis. Here, the null hypothesis is that no reliable peak location
exists for the condition contrast across subjects. The permutation test can
resolve the issue of having no standard criterion for how short the peak
distance should be to count as replication. For the example analysis
(Fig. 5A), we generated null distributions of peak distance by shuffling
the condition labels (e.g., ‘rejection’ and ‘friend’) within each participant
(for more details, seeMethods). The permuted data showed the intrinsic
distribution of the peak distance within the dACC ROI, which was not a
normal distribution. The test results showed that the observed peak
distance for [rejection vs. friend] (d¼ 43.1mm, see Fig. 1B) was not
significantly shorter than the permuted peak distance, p¼ 0.617, sug-
gesting that the replication study failed to reproduce the brain activation
map more closely compared to random (null) maps. The test result for
[pain vs. warmth] (d¼ 14.7mm) also suggested replication failure,
p¼ 0.223. This may be a function of the poor measurement properties of
peak distance, as discussed above, rather than a failure to find repro-
ducible activation, considering other test results presented below.

Second, when multiple peak coordinates are available from previous
studies, one can run Bayesian MANOVA or meta-analysis. Bayesian
MANOVA can provide evidence for and against the hypothesis that a new
study produces peak activation locations consistent with prior studies (a
web-based Bayes factor calculation is available at http://cocoanlab.skku
.edu/bayes_factor_bayesian_manova). Multivariate confidence regions
are useful to visualize the peak distributions around the peak center
along with the results of Bayesian MANOVA (for more details of how to
construct confidence region, see Methods). In our example, as shown in
Fig. 5B, the Bayes factor in favor of null hypothesis (BF01) suggested that
the peak distributions of the original and replication studies are distinct
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for the [rejection vs. friend] contrast, BF01¼ 0.08. The Bayes factor for
the [pain vs warmth] contrast supported null hypothesis, BF01¼ 2.56,
suggesting successful replication. Note that, similar to the use of confi-
dence regions, one should be cautious about interpreting MANOVA re-
sults when peak coordinates are highly variable because high variance
indicates that the peak locations are not reliable.

In addition to MANOVA, conducting coordinate-based meta-analysis
is strongly recommended to combine multiple peak coordinates
(Samartsidis et al., 2017). Meta-analysis provides a principled way of
constructing a priori hypotheses, preventing an arbitrary cherrypicking of
prior studies to favor current findings. Particularly, with model-based
meta-analysis such as Bayesian Spatial Point Process (BSPP) model
(Kang et al., 2011b; Wager et al., 2015), one can calculate the posterior
probability of observing the current data based on the peak information
from previous studies. We do not provide a full description of this method
in this paper because it is also beyond the scope of the current study.

4.4. Multivariate pattern-based tests

Amultivariate pattern-based approach provides a powerful alternative
to the region- and coordinate-based approaches in reducing flexibility in
hypothesis testing. In addition to its ability to capture information
distributed across multiple voxels and regions, the pattern-based approach
can provide a precisely defined a priori model, which contains specific
information about the activation location and relative patterns of activity
levels. The pattern-based a priori model removes any wiggle room for
further interpretation or redefinition of the model, eliminating the pos-
sibility of hiding a large number of hidden hypotheses. Researchers can

http://cocoanlab.skku.edu/bayes_factor_bayesian_manova
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even save their pattern model as an image file (e.g., a nifti file), allowing
easy sharing of the model across researchers and laboratories. In addition,
the models can be easily applied and tested across studies and datasets
with no further modification, minimizing flexibility in testing and repli-
cating effects in new individuals and studies and making the tests
confirmatory, falsifiable, cumulative, and transparent.

As shown in Fig. 5C, when unthresholded maps are available from the
previous studies, one can use permutation tests for pattern similarity
between two brain activation maps (defined by Pearson's correlation
coefficients across voxels). In our example analysis, we generated null
distributions of pattern similarity between the dACC activation patterns
of two group-level contrast maps by shuffling the condition labels within
each participant (for more details, seeMethods). The test results showed
that the observed pattern similarity for the [rejection vs. friend] contrast
(r¼�0.06, see Fig. 1B) was not higher than the permuted pattern sim-
ilarity, p¼ 0.672, suggesting that the replication study failed to repro-
duce the brain activation map. The test result for the [pain vs. warmth]
contrast (r¼ 0.72) showed that the observed pattern similarity was
significantly higher than the permuted pattern similarity, p< 0.0001,
suggesting a successful replication.

Finally, Fig. 5D provides an example analysis for multivariate pattern-
based marker approach. In the example analysis, we trained pattern
classifiers (using linear support vector machines) based on the original
data (n¼ 30), one for [rejection vs. friend] and the other for [pain vs.
warmth]. Then we tested the exactly same classifier models (without any
modifications) on the replication data (n¼ 29) (for more detailed test
procedure, see Methods). The classification accuracy for the [rejection
vs. friend] contrast was 59%, which was not different from chance,
p¼ 0.46, suggesting a replication failure. Conversely, the classification
results for the [pain vs. warmth] contrast showed a significant accuracy,
83%, p< 0.0001, suggesting a successful replication.

Despite its advantages, the multivariate pattern-based approach that
uses a priori pattern-based models also has a limitation: A priori pattern
models can utilize only the voxel-level information that is consistent and
conserved across people and studies. The amount of information
conserved across individuals and studies could be small depending on the
target mental events, study populations, and even differences in pre-
processing pipelines. To address this limitation, researchers can build
and test their hypotheses on the representational space, not on the brain
space, using methods such as hyper-alignment (Haxby et al., 2011) or
representational similarity analysis (Kriegeskorte and Kievit, 2013).
However, even for the representational space-based approach, the same
caution should be given to make hypothesis testing and replication
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assessment more falsifiable and transparent.

5. Conclusion

Though anatomical region-level descriptors provide the most popular
spatial models for testing and replicating previous findings in neuro-
imaging studies, the gross anatomical region descriptors can be inter-
preted in many different ways without further specification of the
hypothesized locations and patterns of activation. These region-level
models introduce unwanted flexibility into a study, resulting in unfalsi-
fiable hypotheses, false positive findings, and replication failure. To build
a more cumulative and falsifiable science of neuroimaging, we recom-
mend using more quantitative spatial models in testing and replicating
previous findings and reporting them. First, we recommend providing
quantitative spatial evidence for the claimed replication. From our survey
on 135 studies that suggested replications of previous findings, we found
that a high proportion of the studies (42.2%) provided no quantitative
evidence for replication at all. Second, if researchers form their a priori
hypotheses using peak coordinates from previous studies, we recommend
conducting formal statistical tests on peak distance or peak distribution
using permutation tests, Bayesian MANOVA, or meta-analysis. Lastly, we
strongly recommend using the a priori multivariate pattern-based
approach, which can eliminate flexibility in interpreting a priori hy-
potheses by providing precise definitions of activation locations and
relative patterns of activity. These practices will provide researchers with
more robust spatial tests, helping us move forward in resolving the cur-
rent replication crisis in neuroimaging studies.
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7040171. We also provide a web-based Bayes factor calculation for
MANOVA at http://cocoanlab.skku.edu/bayes_factor_bayesian_manova/.
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Appendix. Summary of recommendations

Recommendation 1: Provide quantitative evidence when claiming replications

● Report peak distance between the original and replication studies:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xrep � xorig

�2 þ �
yrep � yorig

�2 þ �
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● Construct and visualize confidence regions around estimated peak locations:
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● Estimate pattern similarity between the original and replication maps:Pn
i¼1ðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
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● Calculate and test pattern expression values using a priori pattern-based models:

Xn

i¼1

wixi

Recommendation 2: Use spatial models and tests for peak locations

● Permutation tests for peak distance: Permutation tests can be used to examine whether the observed peak distance between original and
replication studies is significantly shorter than the permuted peak distance.

● Bayesian MANOVA: Bayesian MANOVA can be used to test whether the multivariate sample means of two sets of peak coordinates (e.g., a set of
individual participants' peak coordinates for an original study and a set for an attempted replication) are the same or different using Bayes Factors to
quantify evidence for replication.

● Coordinate- or model-based meta-analysis: These methods can be used to estimate the posterior probability of observing the current data based
on the peak information from previous studies.

Recommendation 3: Use a priori multivariate pattern-based models

● Permutation tests for pattern similarity: Permutation tests can be used to examine whether pattern similarity of activation maps between an
original study and a replication study is higher than the permuted pattern similarity.

● Classification tests for pattern expression values: An a priori pattern-based model from an original study can be used to examine whether the a
priori model can classify the target conditions in a replication study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuroimage.2019.03.070.
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