
Kim et al., Sci. Adv. 10, eado8230 (2024)     11 September 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

1 of 13

N E U R O S C I E N C E

A computational mechanism of cue-stimulus 
integration for pain in the brain
Jungwoo Kim1,2,3, Suhwan Gim1,2,3, Seng Bum Michael Yoo1,2,3,4*†, Choong-Wan Woo1,2,3,5*†

The brain integrates information from pain-predictive cues and noxious inputs to construct the pain experience. 
Although previous studies have identified neural encodings of individual pain components, how they are inte-
grated remains elusive. Here, using a cue-induced pain task, we examined temporal functional magnetic reso-
nance imaging activities within the state space, where axes represent individual voxel activities. By analyzing the 
features of these activities at the large-scale network level, we demonstrated that overall brain networks preserve 
both cue and stimulus information in their respective subspaces within the state space. However, only higher-
order brain networks, including limbic and default mode networks, could reconstruct the pattern of participants’ 
reported pain by linear summation of subspace activities, providing evidence for the integration of cue and stim-
ulus information. These results suggest a hierarchical organization of the brain for processing pain components 
and elucidate the mechanism for their integration underlying our pain perception.

INTRODUCTION
The brain integrates diverse neurobiological and psychological com-
ponents to construct pain perception, including the activation of 
nociceptors (1) and the influence of expectancies (2). Previous studies 
have already identified multiple components that contribute to our 
pain experience (3–5) and how the brain encodes and mediates 
those components (6, 7). For example, the dorsolateral prefrontal 
cortex (dlPFC) is involved in pain-related attention (8, 9), the 
ventromedial PFC and nucleus accumbens in cognitive appraisal 
(10), the somatosensory cortex and thalamus in processing noxious 
inputs (11, 12), and the anterior cingulate cortex (ACC) in the affec-
tive component of pain (13).

Despite the progress in the functional mapping of different pain 
components in the brain, there are still important questions to be 
answered. First, the neuro-computational mechanisms underlying 
the integration of multiple pain components are largely unknown. 
Here, we address this question by adopting the dynamical systems 
approach to formalize the mechanistic process of integration (14). 
Such an approach focuses on two key aspects of neuronal activities: 
temporal dependency and the covariability of neuronal populations. 
Since current neuronal activity influences subsequent activity (i.e., 
temporal dependencies), neuronal activities over time result in tra-
jectories in a state space, where each coordinate axis represents the 
activity of an individual neuron or voxel. Because of recurrent con-
nections among them, which result in covariability, these trajectories 
do not evolve randomly across the entire state space but are confined 
to specific, lower-dimensional subspaces relevant to the task at hand 
(15–17). The characterization of neuronal trajectories and subspaces 
can provide a mechanistic explanation of how the brain processes 
information (18–22), going beyond the description of where and 
what information is encoded or decoded. Second, previous studies 

have suggested that information progressively transforms from 
sensory (i.e., unimodal) to integrative forms (i.e., transmodal) along 
the cortical hierarchy (23) in other domains, such as memory and 
narratives (24, 25). However, it remains unclear whether such a hier-
archical organization also exists for pain processing. Thus, we inves-
tigate the integration of cue and stimulus information within each 
large-scale network in the hierarchy, including unimodal and trans-
modal brain regions, which represent the two extremes of the corti-
cal hierarchy.

The central hypotheses of our study include: 1) The features of 
neural trajectories within each large-scale functional brain network 
underlie the computational process of information integration in 
pain, and 2) the neural evidence for this integration will be more 
pronounced within transmodal brain regions, such as the default 
mode and limbic networks, as opposed to unimodal brain regions, 
such as the visual and somatomotor networks. To test these, we used 
a cue-induced pain modulation task along with functional magnetic 
resonance imaging (fMRI), allowing us to examine the computational 
and organizational principles underlying the pain integration process 
at the whole brain level. To effectively integrate the dynamical systems 
framework into our analysis pipeline, we collected fMRI data with a 
high sampling rate, i.e., a short repetition time (TR = 460 ms), with 
simultaneous multi-slice imaging. We analyzed the data while human 
participants (N = 56) received noxious thermal stimulations follow-
ing pain-predictive cues. To calculate subspaces for each cue and 
stimulus information, we used semisupervised linear dimensionality 
reduction (26, 27) within each large-scale network (28–30). Project-
ing the fMRI activities into cue and stimulus subspaces resulted in 
neuronal trajectories of experimental pain conditions (i.e., different 
levels of cue and stimulus) within each subspace. By using inter-
condition distances between these subspace activities, we examined 
the preservation of cue and stimulus information in their respective 
subspaces.

Our results show that both unimodal and transmodal brain regions 
preserve the cue and stimulus information for pain, while only trans-
modal brain networks, including the limbic and default mode networks, 
integrate this information. This integration is accomplished through the 
linear summation of the distances between neural trajectories from 
each subspace. These findings offer insights on the computational and 
organizational principles underlying the pain integration process.

1Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, 
South Korea. 2Department of Biomedical Engineering, Sungkyunkwan University, 
Suwon, South Korea. 3Department of Intelligent Precision Healthcare Convergence, 
Sungkyunkwan University, Suwon, South Korea. 4Department of Neurosurgery and 
McNair Scholar Program, Baylor College of Medicine, Houston, TX 77030, USA. 5Life-
inspired Neural Network for Prediction and Optimization Research Group, Suwon, 
South Korea.
*Corresponding author. Email: sbyoo@​g.​skku.​edu (S.B.M.Y); waniwoo@​skku.​edu 
(C.-W.W.)
†These authors contributed equally to this work.

Copyright © 2024 The 
Authors, some rights 
reserved; exclusive 
licensee American 
Association for the 
Advancement of 
Science. No claim to 
original U.S. 
Government Works. 
Distributed under a 
Creative Commons 
Attribution 
NonCommercial 
License 4.0 (CC BY-NC). 

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 12, 2024

mailto:sbyoo@​g.​skku.​edu
mailto:waniwoo@​skku.​edu
http://crossmark.crossref.org/dialog/?doi=10.1126%2Fsciadv.ado8230&domain=pdf&date_stamp=2024-09-11


Kim et al., Sci. Adv. 10, eado8230 (2024)     11 September 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

2 of 13

RESULTS
Behavioral evidence for cue-stimulus integration in pain
In the experiment, we presented participants with a 2-s visual 
pain-predictive cue and instructed them that the presented cues 
correspond to pain intensity ratings from 25 participants who 
previously participated in the experiment. After a few seconds 
of delay, we administered heat stimulation to the participants’ 
left forearm for 12.5 s. Participants then rated their pain inten-
sity ratings on a semicircular scale ranging from 0° (no sensa-
tion) to 180° (strongest imaginable sensation) (Fig.  1A). We 
delivered five temperature levels that were calibrated for each 
participant to elicit comparable pain intensities (see Materials 
and Methods for the calibration process). We had three cue con-
ditions: “low pain,” “high pain,” and “no cue” conditions. The 
low-pain cue was associated with stimulus levels 1 to 4, the 
high-pain cue with levels 2 to 5, and the no cue with levels 2 to 
4, resulting in a total of 11 distinct trial types (Fig. 1B, top right). 
If cue-stimulus integration occurs, varying cue conditions should 
lead to different levels of pain ratings even for identical stimulus 
intensities (Fig. 1B, bottom right). Our behavioral data supported 
the cue-stimulus integration (Fig. 1C), as evidenced by the sig-
nificant effects of both the cue and stimulus intensity on the 
pain ratings in the multilevel generalized linear model (GLM). 
In the model, we assumed cue and stimulus effects as fixed ef-
fects and subject-level differences as random effects. The result-
ing statistics are as follows: cue: β̂ = 0.107, SEM = 0.008, z = 3.879, 
P  =  1 × 10−4, two-tailed, bootstrap test; stimulus: β̂ = 0.107, 
SEM = 0.005, z = 3.631, P = 3 × 10−4; interaction: β̂ = 0.006, 
SEM = 0.003, z = 1.808, P = 0.071.

Computational and organizational hypotheses about 
pain integration
Our first hypothesis, which proposes that the features of neural tra-
jectories underlie the computational process of information integra-
tion in pain perception, can be considered in two steps: 1) There are 
distinct neural subspaces for encoding cue and stimulus intensity 
information, and 2) the geometric features of neural trajectories 
within each subspace account for information preservation and 
integration. These assumptions are grounded in previous literature 
that suggested subspace as an encoding dimension for experimental 
variables (31–34) and how the geometry of representations under-
lies cognitive processes (19, 35–37).

To test these hypotheses, we first identified distinct subspaces by 
applying a semisupervised linear dimensionality reduction method 
(26, 27) to fMRI time-series data from the heat stimulation period. 
This method involves factorizing the cue and stimulus information 
from the temporal estimates of fMRI activities by GLM (Fig. 2A) 
and then applying principal components analysis (PCA) on the 
factorized information (Fig.  2B). We conducted this analysis for 
each large-scale functional brain network separately, resulting in 
two subspaces for each network. We assumed that these subspaces 
encode the information for either the cue or the stimulus. Subse-
quently, we projected the fMRI time-series data onto these two sub-
spaces. In each subspace, we used the inter-trajectory Euclidean 
distances for each time point across experimental conditions to cal-
culate encoding performances, which is a metric indicating how 
well the subspace preserves (or encodes) the information over time 
(for details, see Materials and Methods and fig. S1). Encoding per-
formances were calculated as R-squared from the GLM analysis 

Fig. 1. Trial structure and behavioral results. (A) The trial structure of the cue-induced pain modulation task. The gray semicircle represents the rating scale ranging 
from 0° (no sensation) to 180° (strongest imaginable sensation). The distribution of orange dots during the cue period differed across the two cue conditions, for high-pain 
cue and for low-pain cue (see Materials and Methods for detail). Participants were informed that the dots were ratings from participants who had experienced the same 
intensity stimuli in other experiments. After a jittered delay, participants received heat stimulation while providing continuous ratings on their ongoing prediction of pain 
intensity, which were not included in the current study (for prediction rating in the figure, see Materials and Methods). After the heat stimulation, the participants rated 
the overall pain intensity for the trial. (B) Hypothetical plots for the cue and stimulus effects on pain ratings. The plot in the top left panel shows the case where only cue 
information is processed, whereas the plot in the bottom left panel shows when only stimulus information is processed. The plot in the bottom right panel shows the case 
where both cue and stimulus information are processed. Different colors indicate different cue and stimulus intensity conditions. There were five levels of stimulus inten-
sities that were calibrated for each participant before fMRI scans (see Materials and Methods for detail). (C) Behavioral results. The plot shows average pain ratings across 
participants (N = 56) for different cue and stimulus conditions. The error bars indicate the SEM across participants. The pattern of behavioral ratings clearly shows the 
evidence for the integration of cue and stimulus information. All the behavioral results presented in the current study used the average of the last 1 s of the overall pain 
rating period.
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with inter-trajectory distance information as the dependent vari-
able and either cue or stimulus information as the independent 
variable depending on the corresponding subspace. If the encoding 
performances of the subspace are significantly larger than those 
from the null subspace, we consider the subspace to encode the 
corresponding information (upper right panel of Fig. 2C). The null 
subspace was established by permuting conditions of independent 
variables during the GLM process in Fig. 2A. Encoding each piece 
of information in a subspace is a necessary but not sufficient 

condition for achieving information integration. To examine the 
integration of the cue and stimulus information, we summed the 
inter-trajectory Euclidean distances—the same metric used to cal-
culate encoding performances—from both subspaces to reconstruct 
the actual pain ratings. We validated this linear operation by com-
paring its output (i.e., reconstructed ratings) with the actual pain 
ratings averaged across participants. If the reconstructed ratings 
align with the actual pain ratings, we considered the network to in-
tegrate both types of pain information (lower right panel of Fig. 2C).

Fig. 2. Schematic of the data analysis workflow. (A) The schematic illustrates the process of factorizing cue and stimulus information. For each large-scale network, we 
estimated the temporal fMRI activities using the finite impulse response (FIR) model at the voxel level. Then, for each voxel, we performed GLM with between-subject 
average FIR values as the dependent variable (gray-shaded box in the figure) and cue and stimulus information as the independent variables. Specifically, we assigned 
values of −1, 0, and 1 to represent low cue, no cue, and high cue, respectively, and values from 1 to 5 to represent stimulus levels 1 to 5. We concatenated the resulting 
regression coefficients for each cue (denoted as tBetacue) and stimulus (denoted as tBetastim) across all voxels. We consider these the factorized information of the respec-
tive cue and stimulus information within each network. (B) Using factorized cue and stimulus information (tBetacue and tBetastim), we performed PCA to obtain cue and 
stimulus subspace. We projected FIR estimates on each subspace, resulting in condition-wise temporal trajectories (colored curves in each subspace). We used inter-
condition trajectory distances to calculate encoding performances for assessing information preservation (see Materials and Methods and fig. S1) and to reconstruct pain 
ratings for evaluating information integration (see Materials and Methods and Fig. 5A). (C) Hypothetical cases of networks preserving and integrating cue and stimulus 
information. If the encoding performance was greater than the performance with the null subspace, we consider the subspace to preserve the corresponding informa-
tion. If the reconstructed ratings track the actual pain ratings, we consider the network to integrate both types of information. We hypothesized that the unimodal 
networks (left) would encode modality-specific information and fail to integrate the information, while the transmodal networks (right) would encode both types of in-
formation and also integrate them.
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Next, to investigate our second central hypothesis, which posits 
that neural evidence for integration would be more pronounced 
within transmodal brain regions, we calculated encoding perfor-
mances and behavioral fits of the reconstructed pain ratings across 
large-scale functional networks. These large-scale networks were 
defined on the basis of previous studies (28–30) that segmented the 
cerebrum, cerebellum, and striatum into seven networks using 
resting-state fMRI data. We chose this network solution because it 
provides plausible boundaries of the cortical gradient that reflect hi-
erarchical organization (38) and has demonstrated its validity for 
showing the brain’s hierarchical properties in previous studies (39–
41). We also confirmed the gradient organization within our dataset 
by assigning the first principal gradient scores (23) to each network 
using the participants’ resting-state fMRI data (fig. S2). Our hypoth-
esis predicts that unimodal networks, such as the visual and somato-
motor networks, would selectively encode information related to 
either cue or stimulus, failing to reconstruct the actual pain ratings 
(left panel of Fig. 2C). In contrast, transmodal networks, such as the 
frontoparietal, limbic, and default mode networks, would preserve 
information from both cue and stimulus, but they also accurately 
reconstruct actual pain ratings (right panel of Fig. 2C).

Preservation of pain components in unimodal 
brain networks
We investigated whether the unimodal networks, including the visual 
and somatomotor networks, selectively preserve either the cue or the 
stimulus information using encoding performances within the sub-
spaces of each unimodal network. In the visual network, encoding 

performances were higher for cue information compared to stimulus 
information (t48 = 5.479, P = 1.553 × 10−6, two-tailed, paired t test) 
(Fig. 3A). Conversely, in the somatomotor network, the results were 
reversed, with higher encoding performances for stimulus informa-
tion than cue information (paired t test, t48  =  8.014, P  =  2.097 × 
10−10, two-tailed) (Fig. 3B).

When comparing the encoding performances with those from 
the null subspaces, the results showed significantly higher encoding 
performances in both cue and stimulus subspaces than those in the 
respective null subspace for all unimodal networks (see Materials 
and Methods for null space generation process). In the visual net-
work (Fig. 3C), encoding performances in the cue and stimulus sub-
spaces were significantly greater than those in the null subspaces (for 
cue, t48 =  8.243, P =  9.466 × 10−11, and for stimulus, t48 =  5.818, 
P = 4.753 × 10−7, two-tailed, paired t test). The somatomotor net-
work (Fig.  3D) also showed significantly higher encoding perfor-
mances in both cue (t48 = 7.366, P = 2.022 × 10−9, tailed, paired 
t test) and stimulus subspaces (t48 = 7.451, P = 1.502 × 10−9, two-
tailed, paired t test) compared to the null subspaces. These results 
demonstrate that unimodal networks preserve both cue and stimulus 
information within their respective subspaces but with a certain de-
gree of specificity—i.e., the visual network for the cue information 
and the somatomotor network for the stimulus information.

Figure 3 (E and F) shows the neural trajectories within subspaces 
from which the encoding performances were calculated for the 
visual network and somatomotor network, respectively. The actual 
encoding performances were calculated on the basis of the subspac-
es consisting of 20 dimensions, but the trajectories are displayed in 

Fig. 3. Encoding performances and neural trajectories in unimodal networks. (A and B) Encoding performances of the visual (A) and somatomotor networks (B). The 
encoding performance was calculated for each time point, and the plots show the time information with the graded colors ranging from cool (early) to warm (late) colors. 
(C and D) Encoding performances based on the actual versus null subspaces for the visual network (C) and the somatomotor network (D). (E) Neural trajectories of the 
visual network. The plots show the neural trajectories of the experimental conditions within the cue (left) and the stimulus subspaces (right). The axes were the top three 
PCs of the temporal regression coefficients, as depicted in Fig. 2B. The trajectories were smoothed with a Gaussian kernel (SD: 3 TRs) for visualization purposes. The un-
smoothed trajectories were used for the actual analysis. The trajectories’ colors (cue levels) and brightness (stimulus intensity levels) indicate different experimental condi-
tions. The trajectory’s starting point aligns with the onset of pain stimulation, while its ending point corresponds to 10 s after the pain offset. A black dot marks the end of 
each trajectory. (F) Neural trajectories of the somatomotor network. The layout is the same with (E). ****P < 0.0001, two-tailed, paired t test.
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3 dimensions for visualization. The number of dimensions was 
selected on the basis of the explained variance of principal compo-
nents (PCs) (fig. S3), but the results did not significantly differ when 
tested with different numbers of dimensions (table S1).

In sum, unlike our initial hypothesis, we found that the unimod-
al brain networks also preserved both cue and stimulus information. 
However, a preference in encoding was noted: The visual network 
preferentially encoded cue information (Fig.  3A), whereas the 
somatomotor network showed a preference for stimulus informa-
tion (Fig. 3B). This nuanced distinction indicates that while both 
types of information are preserved within these networks, each 
network exhibits a bias toward one type of information over the other.

Higher effect sizes of pain component preservation in 
transmodal brain networks
Next, we also investigated whether the transmodal networks, includ-
ing the limbic, frontoparietal, and default mode networks, preserve 
both cue and stimulus intensity information. First, we examined 
whether the networks showed different encoding performances 
between the cue and stimulus information. In the limbic network, 
there were no significant differences in encoding performances 
between cue and stimulus information (Fig.  4A; t48  =  1.046, 
P  =  0.301, two-tailed, paired t test, Bayes factor favoring the null 
hypothesis =  3.85). For the frontoparietal and default mode net-
works, encoding performances for stimulus information were more 
pronounced than for cue information, similar to the results of the 
somatomotor network (frontoparietal: t48 = 6.065, P = 1.992 × 10−7, 
Fig. 4B; default mode: t48 = 3.872, P = 3.260 × 10−4, Fig. 4C).

Second, when comparing the encoding performances with those 
from the null subspaces, the encoding performances of both the cue 
and stimulus subspaces were significantly higher than those from the 
respective null subspaces in all transmodal networks. As shown in 
Fig.  4D, the limbic network showed significantly higher encoding 
performances for both cue (t48  =  24.801, P  =  5.089 × 10−29) and 

stimulus information (t48  =  13.718, P  =  3.148 × 10−18). Similar 
results were observed in the frontoparietal network (Fig. 4E; for the 
cue subspace: t48 = 7.322, P = 2.362 × 10−9; for the stimulus sub-
space: t48 = 8.220, P = 1.026 × 10−10) and the default mode network 
(Fig. 4F; for the cue subspace: t48 = 7.126, P = 4.717 × 10−9; for the 
stimulus subspace: t48 = 9.135, P = 4.495 × 10−12; all P values were 
two-tailed and derived from paired t tests). These results demon-
strate that the transmodal networks also preserve both cue and stim-
ulus intensity information in their respective subspaces. Figure 4 (G 
to I) shows the neural trajectories within subspaces from which the 
encoding performances were calculated for the networks.

Further analyses revealed significant differences in effect size for 
encoding performances between the unimodal versus transmodal 
networks (fig. S4). We derived effect sizes by subtracting the null 
results from the actual encoding performances. Then, we calculated 
average effect sizes for cue and stimulus intensity across transmodal 
and unimodal networks and compared them between the two net-
work types. The results show that the transmodal networks exhibited 
greater effect sizes for cue and stimulus intensity than the unimodal 
networks (for cue, t48 =  9.118, P =  4.754 × 10−12; for stimulus, 
t48 = 11.566, P = 1.755 × 10−15, two-tailed, paired t test). The greater 
effect sizes observed in the transmodal networks indicate their 
prominent roles in processing multiple pain-related information.

The results from the dorsal attention (dAttention) and ventral 
attention (vAttention) networks, which are positioned between 
the unimodal and transmodal networks in the cortical hierarchy 
(fig. S2), also indicated significant encoding of both cue (for dAtten-
tion: t48  =  5.142, P  =  4.962 × 10−6; for vAttention: t48  =  14.483, 
P  =  3.830 × 10−19; all P values are two-tailed, paired t tests) and 
stimulus information (for dAttention: t48 = 7.977, P = 2.388 × 10−10; 
for vAttention: t48  =  10.211, P =  1.273 × 10−13). The figures for 
encoding performances and neural trajectories of these networks 
are detailed in fig.  S5. Note that the networks’ cue and stimulus 
effect sizes show no significant correlation with their number of 

Fig. 4. Encoding performances and neural trajectories in transmodal networks. (A to C) Encoding performances of the limbic (A), frontoparietal (B), and default mode 
networks (C). The encoding performance was calculated for each time point, and the plots show the time information with the graded colors ranging from cool (early) to 
warm (late) colors. (D to F) Encoding performances based on the actual versus null subspaces for the limbic (D), frontoparietal (E), and default mode networks (F). 
(G to I) Neural trajectories of the limbic (G), frontoparietal (H), and default mode networks (I). The plots show the neural trajectories of the experimental conditions 
within the cue (left) and the stimulus subspaces (right). The axes were the top three PCs of the time-series regression coefficients. The trajectories were smoothed with a 
Gaussian kernel (SD: 3 TRs) for visualization purposes. The unsmoothed trajectories were used for the actual analysis. The trajectories’ colors (cue levels) and brightness 
(stimulus intensity levels) indicate different experimental conditions. The trajectory’s starting point aligns with the onset of pain stimulation, while its ending point cor-
responds to 10 s after the pain offset. A black dot marks the end of each trajectory. ns, P > 0.05; ***P < 0.001; ****P < 0.0001, two-tailed, paired t test.
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voxels (cue effects: rs  =  −0.143, P  =  0.783; stimulus effects: 
rs  =  −0.179, P  =  0.713; two-tailed, Spearman’s rank correlation; 
fig. S6).

Neural evidence for cue-stimulus integration in the limbic 
and default mode networks
Contrary to our initial hypothesis, which posited that the unimodal 
networks would selectively encode either cue or stimulus informa-
tion and the transmodal networks would encode both, our results 
presented a different scenario. We observed that all networks across 
the whole brain preserved information about both cue and stimulus. 
Such distributed encoding of cue and stimulus led us to question 
whether these networks also integrate the two pieces of information 
they preserve. We predicted that the transmodal network would 
integrate the information, while the unimodal network would not. 
To investigate cue-stimulus integration within these networks, we 
reconstructed pain ratings from the neural trajectories within sub-
spaces of each network, and calculated reconstruction fits that mea-
sure how well the reconstructed outcome aligned with the pain 
ratings of the participants (Fig. 5A).

As our hypothesis predicted, unimodal network regions did not 
successfully reconstruct pain ratings (Fig. 5, B and C). For example, 
ratings reconstructed using the visual network reflected only cue 
information (Fig. 5B), and the reconstruction fits were not signifi-
cant [md (median) = 0.615, n = 49, z = 1.432, P = 0.076, one-tailed, 
Wilcoxon signed-rank test]. In addition, ratings reconstructed on 

the basis of the somatomotor network largely captured stimulus 
information rather than cue (Fig. 5C), and their reconstruction fits 
were also not statistically significant (md = 0.507, n = 49, z = 0.975, 
P = 0.165).

Meanwhile, the limbic and the default mode networks success-
fully reconstructed the pain ratings (Fig. 5, E and F), demonstrating 
significant reconstruction fits (limbic: md = 0.911, n = 49, z = 6.088, 
P = 5.726 × 10−10; default mode: md = 0.791, n = 49, z = 3.183, 
P = 7.285 × 10−4; all P values were one-tailed and derived from 
Wilcoxon signed-rank test). In particular, the limbic network, which 
showed the highest encoding performance and effect size (Fig. 4D), 
also showed the highest reconstruction fit among all networks 
(Fig. 5G). Note that the reconstruction fits were also significant for 
the vAttention network (md = 0.846, n = 49, z = 1.900, P = 0.029) 
but not for the frontoparietal network (md = 0.424, n = 49, z = 1.592, 
P = 0.056; Fig. 5D). The significant reconstruction fits in the limbic, 
default mode, and vAttention networks remained consistent even 
when we used a different number of PCs for subspaces (fig. S7). 
Note that the networks’ reconstruction fits show no significant cor-
relation with their number of voxels (rs = −0.071, P = 0.906; two-
tailed, Spearman’s rank correlation; fig. S6).

To assess the robustness of the results without using the spatial 
information of the predefined large-scale networks, we also conducted 
a whole-brain searchlight analysis. This involved repeating the 
analysis procedure of calculating the encoding performances and 
reconstruction fits for each spherical searchlight (radius = 5 voxels) 

Fig. 5. Reconstructing pain ratings from neural trajectories. (A) The schematic illustrates how we reconstructed pain ratings from neural trajectories. For each time 
point in each subspace, we projected the neural trajectories onto the line that connects the maximally distant two conditions (the same procedure described in fig. S1), 
resulting in 11 distance values corresponding to 11 experimental conditions. In the cue subspace, we averaged the distances within each cue condition, resulting in three 
values. We then added the distance values from the stimulus subspace to these values in such a way that stimulus conditions corresponded to their respective cue condi-
tions. We made the middle value (i.e., no cue and stimulus intensity level 3) as a reference by subtracting it from others and then divided the output by its SD. This proce-
dure resulted in 11 values represented as straight colored lines of the plot, and we further compared them with the actual pain ratings. For actual pain ratings, we 
averaged the pain ratings of conditions across participants and set the same reference point with the reconstructed pain ratings and divided the value by its SD, which 
made the scale of the reconstructed and actual pain ratings comparable. (B to F) Reconstructed pain ratings (colored lines) and actual pain ratings (black lines) in the 
unimodal [(B) and (C)] and transmodal networks [(D) to (F)]. The error bars indicate the SEM across time. (G) Reconstruction fits for large-scale functional brain networks. 
We used the R-squared as a measure of reconstruction fit. Networks are ordered in descending order of the median. *P < 0.05, ***P < 0.001, ****P < 0.0001.
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around each voxel across the whole brain. The results demonstrated 
significant encoding performances for both cue and stimulus infor-
mation across nearly all brain regions (paired t test, df = 48, Bonferroni 
corrected P < 0.05). However, like prior results, significant recon-
struction fits were primarily observed in regions within the limbic 
and default mode networks (fig. S8).

Considering that all the presented results included network 
parcellations of cerebral, cerebellar, and striatal regions, we conducted 
the same analysis, examining the encoding performances and recon-
struction fits, only using the cerebral cortex regions (28). The analy-
sis yielded a similar result to the whole-brain version, i.e., significant 
encoding of cue and stimulus information across all networks, but 
significant reconstruction fits only within the limbic and default 
mode networks (limbic: md = 0.870, n = 49, z = 6.088, P = 5.726 × 
10−10, and default mode: md = 0.660, n = 49, z = 2.626, P = 0.004, 
one-tailed, Wilcoxon signed-rank test; fig. S9).

Overall, our findings suggest that all networks preserved infor-
mation about cues and stimuli, but only the limbic and default mode 
networks demonstrated the integration of this information. This 
integration was evident by linearly combining inter-trajectory dis-
tance information from the pain component subspaces.

DISCUSSION
In this study, we used the dynamical systems framework to analyze 
whole-brain fMRI data, revealing differences in the preservation and 
integration of cue and stimulus information along the cortical hierarchy. 
Using semisupervised linear dimensionality reduction (26, 27), we 
derived two distinct subspaces, each encoding information about the 
pain-predictive cue and stimulus intensity. We then quantified the 
distances between the trajectories of different experimental condi-
tions (i.e., inter-trajectory distances) within these subspaces and 
showed that all functional brain networks, ranging from unimodal 
to transmodal, preserved information about cues and stimuli. In 
addition, we reconstructed pain ratings by linearly combining inter-
trajectory distances in the subspaces and found successful recon-
struction in the transmodal networks, specifically the limbic and the 
default mode networks. This result remained robust when using 
different number of PCs for subspaces, conducting voxel-level 
searchlight analysis, and using spatial masks that included only 
the cerebrum. This implies the importance of the limbic and the 
default mode networks for the cue-stimulus integration.

Although prior research has provided a broad understanding of 
information processing and integration along the hierarchy (39, 42, 
43), they have not detailed the computational mechanisms underly-
ing information integration within specific brain regions or networks. 
Conversely, studies that directly measured neuronal responses have 
identified behaviorally relevant neural subspaces (32, 34, 44–50) and 
population dynamics underlying behaviors (18, 51–54), but their 
scope was limited to a few brain regions due to measurement con-
straints. Our study, in contrast, applied the dynamical systems frame-
work to investigate the computational mechanisms of information 
integration across the whole brain using fMRI.

Specifically, we focused on pain processing to understand the 
computational mechanism of integrating information from pain-
predictive cues and noxious stimuli. However, pain inherently 
involves multisensory integration, where inputs from multiple 
sensory modalities, such as visual cues, sensory inputs, and intero-
ceptive signals, collectively contribute to shaping the overall pain 

experience (55). Drawing insights from studies examining neural 
populations to explain general computational principles (31, 35, 51) 
and considering the translatability of neuronal signals into fMRI 
signals (56), our study proposes that linear operations on subspaces 
within populations of fMRI voxels could explain integrated pain 
behaviors. This opens an intriguing opportunity to explore whether 
such straightforward linear operations on subspaces could generalize 
to information integration in other tasks at the whole-brain level.

In terms of hierarchical differences of integration, we observed 
significant reconstruction fit only in the limbic and default mode 
networks, but not in the frontoparietal network, which is considered 
to be situated higher in the cortical hierarchy in resting state and 
other cognitive task fMRI data (23, 24, 57). The frontoparietal net-
work, such as the dlPFC and posterior parietal cortex, is known to 
interact with other brain regions to modulate pain (58–62). The null 
results on this network may suggest that the pain modulatory process 
by the frontoparietal network regions could be distinct from the 
information integration process. Whether this different level of com-
putation exists, and if so, the underlying mechanism should be 
addressed in future studies.

Furthermore, hierarchical differences of preservation and integra-
tion suggest a compromising perspective on the two prevailing 
hypotheses of brain functional organization—distributed processing 
(63–67) and functional specialization (68, 69). Our results suggest 
that although all brain networks preserve both types of information 
(i.e., cue and stimulus), the degree of information preservation 
varies across networks, demonstrating that there is a computa-
tional process (i.e., preservation) following the distributed processing 
model, but another process exists (i.e., integration) that follows the 
functional specialization model.

This further suggests that regions conventionally labeled as “uni-
modal” are not strictly unimodal, aligning with previous studies on 
pain (70, 71). In addition, there is a possibility that the functional 
hierarchical structure changes during pain processing. Many previ-
ous findings identifying the cortical hierarchy were based on resting-
state fMRI data (23, 39, 72), but some studies have shown that 
hierarchical structure can change under task conditions, such as 
during movie watching (40). This suggests that the functional hierarchy 
may also shift during pain processing, indicating a need for a more 
comprehensive theoretical framework to explain the hierarchical 
organization of the brain.

Previous studies on the effects of cues and stimuli on pain using 
electroencephalogram (EEG) have shown that local brain oscillations 
encode stimulus intensity, whereas interregional connectivity en-
codes both intensity and expectancy at specific frequency levels (73, 
74). Such observations indicate that different frequency bands might 
be involved in distinct computational processes for encoding cue and 
intensity information of pain. By leveraging the higher spatial resolu-
tion of fMRI than EEG, our findings propose functional subspaces 
within a network as a complementary-encoding mechanism for this 
information. Future research that combines the spatial resolution of 
fMRI with the temporal resolution of EEG would be valuable for fur-
ther elucidating the computational mechanisms of pain.

Our study, while yielding notable insights, does have limitations 
that necessitate further investigation. First, the low signal-to-noise 
ratio inherent in fMRI data, along with the limited number of trials 
typically available in pain experiments, limited the application of 
single-trial analyses and the exploration of individual differences. 
Future studies should use advanced imaging techniques (e.g., 
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multi-echo imaging and multimodal imaging) to improve data 
quality and detect reliable neural dynamics at a single trial level. 
With technical advancements, trial-by-trial dynamics of pain pro-
cessing from sophisticated task designs (70, 75, 76) and computa-
tional models [e.g., Bayesian models (77)] will offer further insights 
into the computational mechanisms underlying pain perception, like 
some recent studies (78, 79). Second, our experiment only involved a 
specific pain modality (i.e., heat stimulation) with a specific type of 
cue (i.e., social cue based on visual input), but different pain and cue 
modalities, such as mechanical or cold pain, could induce distinct 
neural representations (80–82). Previous literature on multisensory 
integration has shown that a generative process model (i.e., Bayesian 
integration) generalizes to visual-haptic (83), visual-vestibular (84), 
and audio-visual information integration (85). These suggest a pos-
sibility for the generalizability of our findings while also highlighting 
the need for further investigation. Third, our approach used geo-
metrical distance as a common computational unit for information 
integration, which required comparisons across multiple trajectories. 
However, we did not account for variations in dynamic features, such 
as velocity and curvature, across experimental conditions. Recent 
findings suggest that such features (e.g., curvature) are important for 
multiple cognitive functions, such as Bayesian priors (19) or context 
switching (36). In addition to these findings, our results pose intrigu-
ing questions that could enhance the understanding of not only pain 
processing but also general neural computation: 1) Do features of 
dynamics change across different subspaces? 2) How do underlying 
dynamical systems vary across seemingly similar neural dynamics 
observed in different brain regions or networks? Addressing these 
questions will be crucial in future research endeavors.

Neural trajectories within a network and the geometrical features 
derived from them may not be the only explanations for the preser-
vation and integration of pain-related information. Although we 
demonstrated network-level analysis, pain processing may involve 
coordinated activities and interactions across multiple brain networks 
(11, 86). Such dynamic network interactions induce temporally 
evolving connectivities between different brain networks (87), which 
might contribute to the evolving dynamics of individual networks. 
Communication subspaces (88), which refer to dedicated neural sub-
spaces that facilitate information transfer between brain regions, 
could provide a computational explanation. In the context of our 
study, we expect that incorporating additional subspaces within a 
network dedicated to communications would offer a comprehensive 
computational perspective of pain information processing. Further 
research is needed to understand whether such subspaces exist for 
pain and how these computations are implemented at the biology 
level, which will provide deeper insights into the neural basis of pain.

In addition, our analysis method is based on several assumptions 
during both the identification of the subspace (i.e., semisupervised 
linear dimensionality reduction) and the calculation of encoding 
performance. Regarding the subspace identification, we assumed 
that the subspaces that encode cue and stimulus are stationary over 
time, although they might change within a trial and/or across ex-
perimental conditions. In addition, our method relies on predefined 
information about cues and stimuli (i.e., predefined regressors in the 
GLM of Fig. 2A), which might introduce biases, particularly if 
actual neural representations are more complex. Regarding the 
calculation of encoding performance, our approach assumes a linear, 
quantitative relationship between conditions within each subspace 
(i.e., low to high cue and stimulus level 1 to 5), which may not 

capture information about variables if they are nonlinearly repre-
sented. While these assumptions may introduce biases due to the 
simplification of neural representations, previous electrophysiology 
studies have used linear assumptions and dissociated functional 
subspaces of various task variables within populations of mixed se-
lective neurons—neurons that respond to multiple task variables—
and have demonstrated how subspaces and their dynamics can 
explain cognitive behaviors (19, 22, 35). Given that voxels from 
fMRI data also exhibit mixed selectivity, we believe that our ap-
proach could be conceptually valid for fMRI data. However, the 
application of such methods to fMRI data is relatively recent (89–
91), and, hence, the generalizability of these methods in fMRI should 
be further investigated.

Overall, our study showed how and where the information about 
multiple pain components is processed and integrated. We achieved 
this by applying both the dynamical systems framework and the 
concept of cortical hierarchy using human fMRI data. This approach 
allowed us to investigate the computation of pain perception at the 
whole-brain level. Furthermore, our findings have the potential to 
offer valuable insights into the computational underpinnings of 
multisensory integration across a spectrum of cognitive and affec-
tive functions, extending well beyond pain.

MATERIALS AND METHODS
Participants
We used the same dataset as Gim et al. (92), which addressed different 
research questions from those of the current study. Gim et al. (92) 
provided comprehensive details of the entire experimental proce-
dure. Here, we focused on and detailed the experimental procedures 
relevant to the current study. We recruited 84 healthy, right-handed 
individuals without neurological disorders from the Suwon area, 
South Korea, who consented to participate in the pain study. From 
this group, data from 28 participants were excluded for various 
reasons: thirteen because they met the exclusion criteria during the 
pain calibration task (as elaborated in the following section), eight 
withdrew during the initial pain session, one exhibited substan-
tial discrepancies in ratings compared to the pain calibration tasks, 
three requested to quit during the fMRI scan, and one was excluded 
because of technical issues with the MRI scanner. In addition, two 
participants were excluded because of the absence of stimulus onsets 
in a trial, one for a missing field map, and two more because of tech-
nical errors in the preprocessing step. This resulted in a final sample 
size of N = 56 [age = 22.07 ± 2.48 (mean ± SD), 24 females]. Partici-
pants were recruited through university websites and flyers. All 
participants provided written informed consent before participating 
in both the first and second sessions and received a monetary reward 
for their participation (approximately US$10 per hour for behavioral 
tasks and about US$20 per hour for fMRI tasks). The institutional 
review board of Sungkyunkwan University approved the studies (IRB 
2017-05-001).

Thermal stimulation
Thermal stimulation, with temperatures ranging from 40° to 49.2°C 
with a baseline of 32°C, was administered to the left forearm using a 
16 mm–by–16 mm ATS thermode (Medoc, Israel). The duration of 
the thermal stimulation was 12.5 s, consisting of a 5-s ramp up, a 5-s 
plateau, and a 2.5-s ramp down (Fig. 1A). During the pain calibra-
tion task, we switched the stimulation sites among four skin sites on 
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the forearm for each trial. Three of the four skin sites were used in 
the fMRI experiment, where we switched the stimulation sites for 
every run. These three sites were selected on the basis of the linear 
regression results in the pain calibration task. We applied the highest 
temperature of heat stimulation before the pain calibration task (i.e., 
49.2°C) and each run during the fMRI experiment (i.e., temperature 
corresponding to the stimulus intensity level 5) to avoid the initial 
habituation of the skin site (93).

Semicircular rating scale
To collect pain ratings, we used a semicircular rating scale. An 
important feature of the semicircular rating scale is that the starting 
point is equidistant from all possible ratings (i.e., gray outer circle in 
Fig. 1A), addressing an issue of intensity rating being confounded 
with the distance of cursor movement. At the start of the pain rating, 
an orange-colored dot was located at the center of the scale, and 
participants could move the dot using a joystick. Participants were 
asked to report their ratings by adjusting the angle of the dot, with 
0° representing the left end of the semicircle and 180° indicating 
the right end. The angles indicated no sensation (0°), weak (18°), 
moderate (50°), strong (108°), very strong (162°), and the strongest 
imaginable sensation (180°). The rating trajectory was recorded by 
both the x and y coordinates of the dot and the angle at a sampling 
rate of 60 Hz. To define the anchors of the scale, we modified the 
generalized labeled magnitude scale (94) to make participants use 
the entire space of the scale.

Experimental procedure
The entire experiment consisted of 2-day sessions. The first session 
included the pain calibration task to provide similar levels of pain 
experience across participants (95, 96). The second session included 
the pain task with fMRI scans. Psychtoolbox (http://psychtoolbox.
org) and Matlab (MathWorks) were used to present stimulus, record 
ratings, and deliver heat stimulation.
Session 1: Pain calibration task
When participants arrived at the laboratory, we provided them with 
a detailed overview of the experimental procedure and obtained 
their written informed consent. Following the completion of a set 
of individual difference self-report questionnaires, such as demo-
graphic information, personality, and emotional states and traits, 
etc. (not analyzed in this study), we proceeded with the pain cali-
bration task. This task served three purposes: 1) to familiarize 
participants with the heat stimulation and the experimental envi-
ronment for rating, including the use of a joystick to navigate the 
rating scale; 2) to assess individual’s subjective pain intensity to en-
sure similar levels of pain experience among participants; and 3) to 
identify and exclude individuals who exhibited either an excessively 
low or high sensitivity to heat stimulation. During the pain calibra-
tion task, we asked participants to report their pain intensity ratings 
for 12 heat stimulations.

The task began with the administration of three predetermined 
heat temperatures (43.4°, 45.4°, and 47.4°C) in a pseudo-random 
order. Pain ratings for these stimuli were used to fit a regression 
line predicting pain ratings based on temperatures. This linear re-
gression line was then used to determine the subsequent stimulus 
temperature. For example, after the initial three stimuli and their 
corresponding pain ratings, a first linear regression estimation was 
carried out, which established three temperature levels indicative of 
low, medium, and high stimulus intensities, corresponding to 30% 

(54°), 50% (90°), and 70% (126°) on the semicircle rating scale. 
These temperatures were then administered in a pseudo-random 
order (i.e., to avoid consecutive high stimulus intensity) across 12 
trials. Linear regressions, after the first three trials, were conducted 
cumulatively by adding the previous trials in the regression process.

Following these trials, the final linear regression model deter-
mined five calibrated temperatures corresponding to five intensity 
levels for each participant (30, 40, 50, 60, and 70% of the scale, or 
54°, 72°, 90°, 108°, and 126°, respectively). These temperatures were 
designed to evoke comparable pain intensities across participants 
during the fMRI experiment. We excluded participants if the esti-
mated temperatures fell outside the predefined temperature range 
(40° to 49.2°C) or if the R-squared value of the final regression model 
was below 0.4. Since the stimulations were applied to multiple skin 
sites, we calculated R-squared values for each site, selecting the top 
three for use in the fMRI experiment. The ambient conditions (light-
ing and temperature) of the room where the pain calibration task 
took place were controlled to match those of the MRI room. To en-
sure consistency in the application of heat stimulations to the same 
skin sites in the subsequent fMRI task, photographs of each partici-
pant’s left forearm were taken after the completion of the pain cali-
bration task.
Session 2: fMRI experiment
On the second day, we conducted an fMRI experiment, which 
included one structural scan (T1), one resting run, two simple mo-
tor task runs, and six pain prediction task runs. Structural images 
were acquired while participants engaged in practice trials of the 
continuous pain prediction task to familiarize themselves with the 
task requirements. During the resting-state run, participants under-
went scanning for approximately 6 min and 10 s (810 TRs), with 
the instruction to fixate on a cross displayed on a screen. We also 
administered a simple motor task, wherein participants were in-
structed to move the orange-colored dot to a specific location on a 
semicircular rating scale using an MR-compatible joystick. The 
data from the motor task were not used in the current study. For 
the pain task runs, each run comprised 18 trials, and there were 6 
runs. Each trial consisted of a sequence of the following events: 1) 
pain-predictive cues, 2) a continuous pain prediction rating while 
undergoing heat stimulation, and 3) a post-heat pain intensity rating 
(Fig. 1A). The fMRI data during the heat stimulation period and the 
post-heat pain intensity rating data were used in the current study.

In the pain-predictive cue phase, 25 orange-colored dots were pre-
sented on the semicircular scale. Participants were instructed that 
each dot represented other participants’ pain ratings from previous 
experiments about the upcoming stimulus. These dots served as pain-
predictive cues based on social information. In practice, we displayed 
25 dots randomly sampled from a normal distribution for high-pain 
cue (mean: 138.6°; SD: 9°) and low-pain cue (mean: 39.6°; SD: 9°).

The second heat stimulation and continuous rating phase in-
volved a rating scale with multiple semicircles and an orange dot at 
the center, appearing 1 s before the heat stimulation onset. Partici-
pants were asked to continuously report their ratings in response to 
the following question, “How much pain do you predict?” with the 
instruction that the angle, rather than the distance from the starting 
point, indicated their pain prediction. They were also instructed to 
report their predictions from the trial onset and continue through-
out, with a movement speed limit imposed on the dot to prevent 
premature maxing out of the scale. The continuous rating data from 
this phase were not used in the current study.
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In the final rating phase, participants were given 5 s to provide 
their overall pain rating in response to the following questions: 
“How painful was it?” (self-pain question) or “How painful would it 
be for others?” (other-pain question). Within each run, 11 trials 
included the self-pain question and 7 trials included the other-pain 
question, and they were given in a randomized order. We exclusively 
used ratings from trials with the self-pain questions, as they allowed 
us to analyze the cue and stimulus effects on overall pain ratings. A 
fixation cross was displayed during the jittered inter-trial and inter-
stimulus intervals, which lasted between 3 and 7 s, totaling 15 s for 
each trial. Trial sequences were pseudo-randomized to avoid con-
secutive repetition of the same condition. The average ratings over 
the last second of the overall pain rating for self-pain questions were 
used for analysis.

fMRI data acquisition and preprocessing
Both functional and structural images were acquired on a Siemens 
3.0 Tesla Magnetom Prisma at Sungkyunkwan University using a 
64-channel head coil. High-resolution anatomical T1-weighted 
images were obtained with the MPRAGE protocol (TR = 2400 ms; 
TE = 2.34 ms; flip angle = 8°; field of view = 224 mm; voxel size = 
0.7 mm). Functional images were obtained using the T2*-weighted 
echo planar image protocol (TR = 460 ms; TE = 27.20 ms; multi-
band factor = 8; field of view = 220 mm; flip angle = 44°; the number 
of slices = 56; voxel size = 2.7 mm3). For functional images, the initial 
set of images (18 TRs) was discarded to ensure signal stabilization.

The functional and structural data were preprocessed with Statis-
tical Parametric Mapping (SPM12; Wellcome Trust Centre for Neu-
roimaging, UCL) and FMRIB Software Library (FSL 6.0.5.1). The 
preprocessing included realignment, distortion correction, coregis-
tration between structural images and functional images, spatial nor-
malization, and spatial smoothing. Functional images were realigned 
to the first single-band reference image, and six movement parameters 
(x, y, z, pitch, roll, and yaw) were estimated for each run. Susceptibility-
induced distortion correction was performed using FSL TOPUP. The 
coregistered functional images, aligned by the structural image, were 
normalized to the standard MNI brain template. These normalized 
images were then smoothed with a 5-mm full width at half maximum 
Gaussian kernel. All preprocessing steps, except for distortion correc-
tion, were performed using SPM. We then removed motion-related 
artifacts using ICA-AROMA (97).

To analyze the temporal dynamics of brain activity during heat 
stimulation, a finite impulse response (FIR) model was used. The 
first-level model included condition-specific regressors, and high-
pass filtering was applied with a cutoff of 0.005 Hz. Nuisance regres-
sors included five PCs of cerebrospinal fluid signal and white matter 
signals and linear drift. To fully capture information for the entire 
trial and to accommodate the hemodynamic response delay, our 
model spanned from stimulus onset to 10 s after stimulus offset, en-
compassing 49 TRs (22.5 s) per condition.

Multilevel GLM analysis
To assess the effects of pain-predictive cues and stimulus intensity 
on ratings, multilevel GLM analyses were conducted using trial-
level behavioral data. In our dataset, we repeatedly measured ratings 
for noxious heat within each participant. To account for the data 
dependence within each participant, we used a multilevel model, 
treating participants as a random effect. To determine whether our 
dataset was appropriate for using a multilevel GLM, we examined 

the normality of the residuals of pain ratings after accounting for the 
effects of cues, stimulus intensities, their interactions, and partici-
pants (98). We performed the Shapiro-Wilk test, which failed to re-
ject the null hypothesis of non-normality (W = 0.999, P = 0.213), 
supporting the normality of residual pain ratings. Furthermore, we 
visualized the residuals with a histogram and quantile-quantile 
plot (fig. S10), demonstrating the plausibility of using a multilevel 
GLM. In the model predicting pain ratings, the cue conditions were 
coded as −1 for low-pain cue, 0 for no cue, and +1 for high-pain 
cue. The five levels of stimulus intensity were coded with the integers 
1 through 5. The model also included an interaction to examine the 
interaction effects of cue condition and stimulus intensity. Averaged 
ratings over the last 1 s of the pain rating trajectory for trials involv-
ing self-pain questions were used for the analysis. To determine 
statistical significance, bootstrap tests with 10,000 resamples were used.

Cue and stimulus subspaces
Using the averaged FIR time-series data across participants, we 
applied the GLM at each time point to factorize the information 
regarding cue and stimulus for each large-scale network. In the 
GLM, the FIR data at each time point were treated as the dependent 
variable, while cue and stimulus information were the independent 
variables. This model provided us with temporal GLM weights. In 
the model, high-pain cue, low-pain cue, and no cue conditions were 
coded as 1, −1, and 0, respectively, while stimulus intensity levels 
were coded as 1 through 5. We used z-scores of both the cue and 
stimulus codes as regressors and added an intercept in the GLM. The 
temporal GLM weights for cue and stimulus regressors, which we 
termed tBetacue and tBetastim, respectively, resulted in a matrix in 
ℝv×t, where v is the number of voxels in the network, and t is the 
number of TRs (= 49). Then, we applied PCA to the matrices and 
used spatial PCs of tBetacue as a cue subspace and tBetastim as a stimu-
lus subspace. We determined the number of PCs of the subspaces 
with a scree plot (fig. S3). We opted to use 20 PCs, which accounted 
for more than 70% of the variance across all networks. However, note 
that varying the number of PCs used did not substantially change the 
results (table S1 and fig. S7).

Encoding performances in subspaces
For each large-scale network, we projected the FIR time series onto 
cue and stimulus subspaces, resulting in condition-level trajectories 
as in Figs. 3 and 4. We then calculated the encoding performance in 
each subspace to assess how well each subspace encoded the relevant 
information. Each time point of trajectories within subspaces is a 
matrix in ℝc×k, where c is the number of conditions and k is the num-
ber of dimensions of the subspace. We selected the most distant two 
points at a single time point and drew a line connecting the two 
points. We then projected the same time point of other trajectories 
onto the line, which resulted in the metric we referred to as the inter-
trajectory distances. We assumed that the information of experi-
mental conditions would be linearly encoded in the subspaces, 
representing differences among conditions as inter-trajectory dis-
tances among conditions. Thus, projecting within-subspace trajecto-
ries onto the line connecting the most distant points in the subspaces 
would represent the quantitative relationship (from the smallest to 
the largest) of the information that the subspace encodes.

We used these inter-trajectory distance values for each time point 
as the dependent variable to calculate R-squared values and used it 
as the encoding performance of each subspace. The independent 
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variables were either z-scores of the cue or stimulus conditions (i.e., 
cues coded as −1, 0, 1, and stimulus as 1 to 5), depending on the 
subspace, with an intercept. Encoding performances were calculated 
for each subspace at every time point. To statistically test these per-
formances, we generated null subspaces by deriving spatial PCs of 
null temporal GLM weights. We obtained these weights using the 
same temporal GLM procedure as for calculating subspaces, but 
with permuted condition labels as independent variables. We used 
the top 20 PCs of the resulting null GLM weights for each cue and 
stimulus subspace. Then, we projected the FIR time series onto each 
null cue and stimulus subspaces, calculated the encoding perfor-
mances, and repeated the permutation of condition labels 5000 
times. The process resulted in 5000 encoding performances for the 
null cue and stimulus subspace, and we averaged the values across 
the iterations, resulting in null encoding performance for each sub-
space. Null encoding performances were also calculated for each 
subspace at every time point. To determine the effect sizes in encod-
ing performance, we subtracted the null encoding performances 
from the encoding performances at the same time point.

Reconstructing ratings from inter-trajectory distance
To examine how the neural trajectories in subspaces were related to 
actual pain ratings, we used the inter-trajectory distances to recon-
struct the average pain ratings across participants for each condition. 
The calculation of inter-trajectory distances follows the same proce-
dures as those calculated for the encoding performances. In both the 
cue and stimulus subspaces, the inter-trajectory distances at a single 
time point resulted in a vector with a size of the number of condi-
tions. We ensured that this vector maintained a consistent quantita-
tive relationship across time points so that the high cue value was 
larger than the low cue value in the cue subspace, and the stimulus 
level 5 value was larger than the stimulus level 1 value in the stimulus 
subspace. The inverse relationship of such conditions might occur 
from the projection process, as the direction of the line connecting 
the maximally distant two conditions, on which the values were pro-
jected, was solely determined by the distance information and igno-
rant of the condition information. This was addressed by multiplying 
−1 in such cases. Note that this process was unnecessary for the 
calculation of the encoding performance, as multiplying −1 does not 
change the resulting R-squared.

In the cue subspace, we averaged the values corresponding to the 
same cue, resulting in three values for high pain, low pain, and no cue 
conditions, respectively. Subsequently, we added the distance values 
from the stimulus subspace to these three values, aligning stimulus 
conditions with their respective cue conditions. For instance, values 
in the stimulus subspace corresponding to a high cue with stimulus 
levels 2 to 5 were added to the high cue value in the cue subspace. The 
resulting output reflects the distance information of both cue and 
stimulus conditions (Fig. 5A). Furthermore, we subtracted the value 
of the middle condition (i.e., the no cue condition with stimulus in-
tensity level 3) from the output and divided it by its SD. For the ac-
tual pain ratings as well, we extracted the middle condition value and 
divided it by its SD to ensure a consistent scale across both the recon-
structed and actual ratings. To compare them, we calculated the 
R-squared value of the reconstruction fit as follows

In the formula, y indicates the across-participants averaged pain 
ratings, yindicates the average of the values, ŷ  indicates the recon-
structed outcome, and c indicates the condition. Both y and ŷ  are in 
the dimension of conditions, which is 11. This metric was calculated 
for every time point.
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