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Fig. S1. Calculating encoding performances. Calculating encoding performance. Group 
average FIR time-series data projected onto cue and stimulus subspaces create neural 
trajectories, represented by colored lines. We selected the two most distant conditions among 
trajectories at single time points (yellow dots with black outlines) and then drew the line that 
connects the two. We then projected the same time point (white dots with black outlines) of other 
trajectories onto the line, resulting in a one-dimensional vector (yellow dots) that encoded 
distance information between trajectories. This is what we referred to as inter-trajectory 
distances, which we used to calculate encoding performances and reconstruct pain ratings.
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Fig. S2. Principal gradient scores from the resting-state fMRI data of the participants in 
this study. The figure shows voxel-wise principal gradient scores from the first gradient of the 
whole-brain resting-state fMRI (N = 56). We used diffusion embedding implemented in the 
BrainSpace Toolbox (99) for the calculation of the gradient. The gradient scores for each 
network were obtained using the network mask employed in the current study. Resting-state data 
were up-sampled to 3 mm for the gradient calculation.  
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Fig. S3. The variance explained by the principal components constituting the cue and 
stimulus subspaces. The upper panel displays the variance explained by principal components 
constituting the cue subspace, while the lower panel displays the variance explained by principal 
components constituting the stimulus subspace. Dashed lines represent the number of principal 
components explaining 70% variance for each network. We used 20 dimensions for all networks 
to control for differences arising from the different number of dimensions. With 20 dimensions, 
the percentage of explained variance in the cue subspace ranges from 70% in the limbic network 
to 97% in the visual network. In the stimulus subspace, it ranges from 74% in the limbic network 
to 94% in the visual network. 
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Fig. S4. Effect sizes of large-scale networks. (A) Effect sizes, calculated as the subtraction of 
null encoding performances from the actual encoding performances, for all seven networks. The 
green plots show effect sizes in the cue subspace, and the orange plots show effect sizes of the 
stimulus subspace. (B) Averages of cue and stimulus effect sizes across networks. The left panel 
displays the effect sizes for the cue subspace, while the right panel illustrates the effect sizes of 
the stimulus subspace. **** p < 0.0001, two-tailed, paired t-test. 
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Fig. S5. Encoding performances and neural trajectories of the dorsal attention (dAttention) 
and ventral attention (vAttention) networks. (A-B) Encoding performances of the dAttention 
(A) and vAttention networks (B). The encoding performances of the stimulus were significantly
larger than those of the cue in both dAttention network (t48 = 5.626, p = 9.286 e-7, two-tailed,
paired t-test) and vAttention network (t48 = 2.628, p = 0.012, two-tailed, paired t-test). The layout
is the same as Figs. 4A-C, D. The encoding performances were based on the actual versus null
subspaces of the dAttention (C) and vAttention networks (D). (E-F) Neural trajectories of the
dAttention (E) and vAttention networks (F). The trajectories were smoothed with a Gaussian
kernel (standard deviation: 3 TRs) for visualization purposes, but the unsmoothed trajectories
were employed for the actual analysis. The layout is the same as Figs. 4G-I. * p < 0.05; **** p <
0.0001, two-tailed, paired t-test.
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Fig. S6. Relationship between effect sizes and the network sizes. Network-level statistics—
cue effects, stimulus effects, and reconstruction fits—were compared with their number of 
voxels within each network. We calculated Spearman’s rank correlation between the temporal 
averages of these statistics and the number of voxels for each network to account for their 
different scales. From the left panel to the right panel, each panel shows the number of voxels on 
the x-axis and cue effects, stimulus effects, and reconstruction fits on the y-axis, respectively, all 
of which showed no significant correlation. (cue effects: rs = -0.143, p = 0.783; stimulus effects:  
rs = -0.179, p = 0.713; reconstruction fits: rs = -0.071, p = 0.906; two-tailed, Spearman’s rank 
correlation)
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Fig. S7. Reconstructed pain ratings using a different number of principal components 
(PCs). (A-G) Comparison of the actual and reconstructed pain ratings from each of the 7 large-
scale networks. In all figures, the left panel shows reconstructed pain ratings from neural 
trajectories within cue and stimulus subspaces of 10 PCs. The middle and the right panels show 
the results using 20 PCs and 30 PCs, respectively. The colored (red, blue, and gray) lines indicate 
the reconstructed pain ratings, while the black lines indicate average pain ratings across 
participants. Both metrics are normalized for comparison between the two. (H) Reconstruction 
fits from each network using a different number of PCs. These were calculated as R-squared 
values of the reconstructed ratings for every time point. Results obtained using 20 PCs are also 
included in the main figures and results. In all cases, reconstruction fits were significant for the 
limbic, default mode, and vAttention networks. In the limbic network, using 10 PCs, md 
(median) = 0.883, z = 6.088, p = 5.236 e-10; 30 PCs, md = 0.905, z = 6.088, p = 5.236 e-10. In 
the default network, using 10 PCs, md = 0.752, z = 2.944, p = 0.002; 30 PCs, md = 0.806, z = 
3.342, p = 4 e-4. In the vAttention network, using 10 PCs, md = 0.852, z = 2.139, p = 0.016; 30 
PCs, md = 0.856, z = 2.586, p = 0.005. Note that using 30 PCs showed significant reconstruction 
fit also in the frontoparietal network (md = 0.506, z = 1.870, p = 0.031). All p values are one-
tailed and from Wilcoxon signed rank test with 49 time points. Networks are aligned in a 
descending order of the median. The results with 20 PCs are presented as the main results and 
figures. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 



Fig. S8. Results of searchlight analysis. We conducted searchlight analyses for all gray matter 
voxels. The spherical searchlight radius size was 5 voxels. (A) Voxels with significant cue 
(middle panel) and stimulus (lower panel) encoding performances. Significance was determined 
using a paired t-test, with df = 48, Bonferroni corrected p < 0.05. The upper panel displays the 
template brain, with each column corresponding to the same spatial axis as in the middle and 
lower panels. (B) Voxels with significant reconstruction fit (left panel) and the radial plot 
showing proportions of significant voxels within a large-scale network (right panel). Significance 
follows the same criterion as in (A), but with a one-tailed Wilcoxon signed rank test. In the radial 
plot, the proportions occupied by each network were calculated as the number of occupying 
voxels divided by the total voxel count of the respective network. 
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Fig. S9. Encoding performances and reconstruction fits of large-scale networks comprising 
only the cerebrum. (A) Encoding performances of all 7 large-scale networks. The encoding 
performance was calculated for each time point, and the plots show the time information with the 
graded colors ranging from cool (early) to warm (late) colors. (B) Encoding performances based 
on the actual cue subspace versus the null subspace. (C) Encoding performances based on the 
actual stimulus subspace versus the null subspace. (D) The colored (red, blue, and gray) lines 
show the reconstructed pain ratings from distances of neural trajectories in subspaces, and black 
lines indicate averaged pain ratings from participants, also normalized for comparisons with the 
reconstructed pain ratings. The error bars indicate SEM across time. (E) Reconstruction fits of 
the large-scale networks. Reconstruction fits were calculated with R-squared values of the 
reconstructed pain rating at each time point. Networks are aligned in a descending order of the 
median. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Fig. S10. Residuals from multilevel GLM of behavioral data. (A) A histogram of trial-level 
residuals of pain ratings after accounting for the effects of cues, stimulus intensities, their 
interactions, and participants. (B) A Quantile-Quantile plot of the residuals of pain ratings. The 
dots indicate the residuals of single trials, and the red line represents the expected distribution if 
the residuals perfectly follow a normal distribution.
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Table S1. Effect sizes with different numbers of principal components 

Note. The table shows t-values and p values of cue and stimulus effect sizes from paired t-test (df 
= 48, two-tailed). We calculated cue and stimulus effect sizes in all 7 large-scale networks using 
different numbers of principal components (denoted as NumPC). The results remained 
significant regardless of the number of PCs constituting the subspaces. Results obtained using 
the 20 PCs are presented as the main results and figures. 

t p t p t p t p t p t p
Visual 8.932 8.932E-12 8.243 9.466E-11 8.107 1.517E-10 5.604 1.002E-06 5.818 4.753E-07 5.919 3.333E-07

Somatosensory 7.473 1.388E-09 7.366 2.021E-09 7.547 1.071E-09 7.533 1.125E-09 7.451 1.502E-09 7.889 3.247E-10
dAttention 5.364 2.310E-06 5.142 4.962E-06 5.098 5.772E-06 8.043 1.899E-10 7.977 2.388E-10 7.944 2.678E-10
vAttention 14.979 1.013E-19 14.482 3.830E-19 15.211 5.487E-20 8.279 8.364E-11 10.211 1.273E-13 11.632 1.431E-15

Limbic 16.630 1.484E-21 24.801 5.089E-29 30.604 3.810E-33 9.546 1.132E-12 13.718 3.148E-18 18.528 1.646E-23
Frontoparietal 6.551 3.598E-08 7.322 2.362E-09 7.963 2.503E-10 8.483 4.136E-11 8.220 1.026E-10 8.510 3.780E-11

Default 6.589 3.144E-08 7.126 4.717E-09 8.192 1.130E-10 7.663 7.145E-10 9.135 4.495E-12 9.826 4.483E-13

Networks NumPC 10 NumPC 20 NumPC 30
Stimulus

NumPC 10 NumPC 20 NumPC 30
Cue
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