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When self comes to a wandering mind: Brain 
representations and dynamics of self-generated 
concepts in spontaneous thought
Byeol Kim1,2,3, Jessica R. Andrews-Hanna4,5, Jihoon Han1,2,6, Eunjin Lee1,2,6, Choong-Wan Woo1,2,6*

Self-relevant concepts are major building blocks of spontaneous thought, and their dynamics in a natural stream 
of thought are likely to reveal one’s internal states that are important for mental health. Here, we conducted a 
functional magnetic resonance imaging experiment (n = 62) to examine brain representations and dynamics of 
self-generated concepts in the context of spontaneous thought using a newly developed free association–based 
thought sampling task. The dynamics of conceptual associations were predictive of individual differences in 
general negative affectivity, replicating across multiple datasets (n = 196). Reflecting on self-generated concepts 
strongly engaged brain regions linked to autobiographical memory, conceptual processes, emotion, and auto-
nomic regulation, including the medial prefrontal and medial temporal subcortical structures. Multivariate pattern–
based predictive modeling revealed that the neural representations of valence became more person-specific as 
the level of perceived self-relevance increased. Overall, this study sheds light on how self-generated concepts in 
spontaneous thought construct inner affective states and idiosyncrasies.

INTRODUCTION

In the activity of association there is mirrored the whole 
psychical essence of the past and of the present, with all their 
experiences and desires. It thus becomes an index of all the 
psychical processes which we have but to decipher in order to 
understand the complete man.

by Eugen Bleuler (1)

Our thoughts continuously come and go, transitioning from one topic 
to another even in the absence of overt task demands. This constant 
change and continuous flow are the key features of spontaneous 
thought (2, 3). Previous studies have found that adults spend a con-
siderable amount of time engaging in spontaneous, perceptually 
decoupled thought, a phenomenon commonly referred to as mind 
wandering (4). Since W. James featured “the stream of thought” 
as a major subject of psychology (5), researchers have posited the con-
tents and dynamics of spontaneous thought to be important factors 
that can explain personality traits and mental health (2, 6). For ex-
ample, recurrent negative thoughts are considered a transdiagnostic 
phenomenon given their links to many mood and anxiety disorders (7). 
Adopting a complex dynamic systems view, spontaneous thought 
could be regarded as a random walk on a semantic network, in which 
the nodes represent autobiographical and semantic concepts, and the 
edges are the associations among the nodes established through past 
experiences (8–10). In this framework, recurrent thoughts can be 
regarded as sticky nodes or strong attractors of the network (11, 12).

Self-relevant concepts are well-known attractors of spontaneous 
thought. Previous studies that examined the contents of sponta-
neous thought have found that the spontaneous thought contents 
are by no means random (2, 3). Rather, thought content tends to 
be self-relevant in nature, encompassing personal concerns, past 
memories, personal goals and planning, thinking about close others, 
etc. (3, 13–17). On the basis of these observations, a number of studies 
have suggested that self-referential processes are key functions of 
spontaneous thought (6,  13,  14,  18,  19). Moreover, self-related 
spontaneous thought is known to be important for long-term health 
and psychological well-being (3, 4, 20, 21).

The past decade has brought increased interest in the neuro-
science of spontaneous and task-unrelated thought, revealing associa-
tions with the brain’s default mode network (DMN) (22). Although 
the DMN was initially featured as a signature of the brain’s “resting 
state,” it is now more broadly appreciated for its role in multiple 
internally guided cognitive and affective processes spanning 
spontaneous thought, conceptual processing, memory and future 
thinking, mentalizing, self-referential processes, and autonomic 
and visceral modulation (21, 23–25). These findings suggest that 
our brain is dynamically and continuously constructing our mental 
and bodily life. The quantitative assessment of brain representations 
and cognitive underpinnings of these dynamic processes would 
therefore help us better understand how and why the brain generates 
particular patterns of spontaneous thought, resulting in a healthy or 
unhealthy body and mind. In the current study, we examined the 
spontaneous thought dynamics and their brain representations 
using functional magnetic resonance imaging (fMRI).

Despite the significance of dynamic, spontaneous thought in 
human psychology and psychopathology, few quantitative tools and 
methods are currently available for neuroimaging studies. To over-
come this challenge, we adapted a recently developed task—the 
Free Association Semantic Task (FAST) (12)—to use in conjunction 
with fMRI. The FAST integrates ideas from free word association, 
experience sampling, and naturalistic tasks and, when adapted to a 
neuroimaging context, shows promise in revealing the dynamically 
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unfolding signatures of spontaneous thought. The history of using 
free word association as a psychological test goes back to Galton (26), 
Wundt (27), and Jung and Riklin (28), but modern psychology has 
largely ignored the method because of its questionable validity. How-
ever, the free association method has recently begun to receive at-
tention again (12, 29, 30), especially for its potential to be combined 
with computational methods, such as natural language processing 
and dynamic modeling, to offer quantitative metrics for the emer-
gence and unfolding of thought. Although early word association 
tasks recorded only one or two words in response to a seed word 
(26–28), we used a “chain” free association to better evaluate the 
dynamic characteristics of the stream of thought (29). We focused 
on the affective and personal aspects of participants’ responses 
because emotionally charged and self-relevant thought topics are 
major ingredients of mind wandering and spontaneous thought 
(4, 13, 17). The free association method is known to be effective in 
revealing an individual’s emotional and autobiographical concepts 
(12, 26, 28). Thus, we expect the FAST to provide a new way to probe 
the dynamic characteristics of affective and self-relevant thoughts, re-
vealing personal inner affective states and idiosyncrasies that are 
important for human behaviors and mental health.

More specifically, this study aims to answer the following two 
research questions (Fig. 1A). First, are dynamic characteristics of 
spontaneous thought assessed with the FAST predictive of individual 
differences in emotional traits such as negative affectivity? Second, 
can we identify and decode the brain representations and dynamics 
of spontaneous thought? To answer these questions, we conducted 
an fMRI experiment (n = 62) in which participants completed the 
FAST involving three distinct phases (Fig. 1B). The first phase 
involved a “concept generation” phase, in which we asked partici-
pants to generate a concept as a word or phrase that came to their 
mind associated with the previous response every 2.5 s starting 
from a given seed word, leading to a self-generated associative concept 
chain. The responses were collected through an MR-compatible 
microphone, and participants generated 40 consecutive concepts 
for each seed word. The second phase involved “concept reflection,” 
in which participants reflected on pairs of self-generated concepts 
in sequence for 15 s while undergoing fMRI scanning. This phase 
aimed to bring to mind the nature of the associative linkage be-
tween concepts generated by reflecting on the personal meaning of 
the concepts. This phase was our main target for the fMRI data 
analysis. The third part was the “postscan survey.” After the fMRI 
scans, participants viewed their self-generated concepts once more 
and rated each concept using a multidimensional content scale (13), 
which consisted of items evaluating emotional valence (how 
positive or negative is the concept?), self-relevance (how much is 
the concept relevant to yourself?), time (is the concept related to the 
past, present, or future?), vividness (does the concept involve 
vivid imagery?), and safety-threat (how much is the concept safe or 
threatening?). For more details of the task procedure, please see 
Materials and Methods.

Overall, the current study aimed to develop a new experimental 
method that allows us to examine the dynamic characteristics of 
spontaneous thought and their brain representations, paving the 
way for quantitative modeling of spontaneous thought dynamics. 
In addition, our findings would provide a deeper understanding 
of where in the brain self-generated, endogenous thoughts are 
represented and how self-relevance modulates the brain’s affective 
representations.

RESULTS
Dynamics of spontaneous thought probed with the FAST
Figure 1 (C and D) shows data from a representative participant to 
illustrate how FAST responses can reveal the characteristic topics 
and dynamic features of an individual’s spontaneous thought. As 
shown in Fig. 1C, FAST responses can be viewed in the context of a 
high-dimensional state space of some phenomenological characteris-
tics. This participant’s concept association initially flowed from a 
given seed word, “tear,” to negatively valence concepts (“cry,” 
“sadness,” and “suicide”), then moved to societal and less self-relevant 
thought topics (“society,” “Bitcoin,” “bubble,” “fail,” and “bank”), 
and transitioned to personal topics (“house,” “company,” and “brother”). 
This example highlights that the FAST can reveal topics of sponta-
neous thought that range from personal narratives to societal 
events and issues (e.g., the data were collected in early 2018 when 
the Bitcoin crash occurred).

FAST responses can also be viewed as a directed graph in which 
the nodes are the response concepts, and the directed edges are the 
connections from the previous concepts to the following associative 
concepts (Fig. 1D). Key hubs of this participant’s graph, including 
“sadness,” “brother,” and “classroom,” can be seen as an attractor 
that is densely connected to other related concepts. FAST responses 
tended to come back to these nodes as if they had strong gravity in 
this personal semantic state space.

Free association dynamics predictive of individual 
differences in negative affectivity
To answer our first research question (Q1  in Fig.  1A, i.e., 
whether the affective dynamics of spontaneous thought assessed 
with the FAST are predictive of individual differences in negative 
affectivity), we used the Markov chain analysis to create input 
features for machine learning to build a predictive model of 
general negative affectivity based on the transitional dynamics on 
the content dimensions. Before the analysis, we ensured that the 
postscan survey ratings reflected participants’ in-scanner expe-
rience by showing that (i) the in-scanner heart rates were substan-
tially modulated by the levels of postscan valence ratings and (ii) 
the valence ratings were consistent with the emotion ratings 
intermittently obtained during the fMRI scans (see figs. S1 and S2 
for detail).

We first defined discrete states for the Markov chain analysis by 
dividing each content dimension into two or three discrete states, as 
shown in Fig. 2A. We divided valence, time, and safety-threat, which 
ranged from −1 to 1, into three discrete states (−1 to −0.33, −0.33 to 
0.33, and 0.33 to 1; for valence, the three discrete states were negative/
neutral/positive; for time, past/present/future; and for safety-threat, 
threatening/neutral/safe). For the self-relevance and vividness di-
mensions that ranged from 0 to 1, we divided them into two discrete 
states (0 to 0.5 and 0.5 to 1, which corresponded to low and high for 
both dimensions, respectively). We then calculated the transition 
probability, defined as the probability of making transitions from 
one to another discrete state on each dimension. We also calculated 
the steady-state probability, defined as the probability of converging 
to one state when the transition processes were sufficiently repeated. 
In addition to these dynamic features from the Markov chain analysis, 
we used each affective dimension’s mean and variance as predictor 
variables for the subsequent predictive modeling. Many of these 
dynamic features were relatively stable over a 7-week interval (for 
their test-retest reliability, see table S1).
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For the predictive modeling, we used least absolute shrinkage and 
selection operator (LASSO) regression to predict individual differences 
in general negative affectivity with leave-one-subject-out cross-
validation (LOSO-CV). The number of predictor variables for the 
final model was determined on the basis of the cross-validation 
performance with the training data (n  =  62; one participant was 
excluded because of excessively few responses). We then tested the 
final model on three testing datasets to evaluate two different 
generalizability types—seed words and response modality. First, we 
tested the model on retest data with an average 7-week interval, in 
which a different set of seed words were used on a subset of partici-
pants from the training dataset (n = 30). Second, we tested the 

model on an independent test data (n = 117) collected from a new 
set of participants using a web-based FAST experiment, which 
collected the response through typing instead of speaking and with 
a longer time limit for a response (for more detail of the web-based 
FAST, please see Materials and Methods). Third, we tested the model 
on retest web-based FAST data with an average 7-week interval, in 
which, again, a different set of seed words were used on a subset of 
participants from the web-based FAST dataset (n = 49). As the out-
come variable, we used factor scores from a factor analysis of sub-
scales from self-report questionnaires measuring multiple aspects 
of general negative affectivity (for the details of the factor analysis 
results and self-report questionnaires, please refer to tables S2 to S4).

A Main research questions

Q2-2) How does the level
of self-relevance change
the brain representations
of affective valence?
(Figs. 5–6)

Q2) Can we identify and decode
the brain representations and
dynamics of spontaneous
thought’s content dimensions?
(Figs. 3–6)

Q2-1) How are self-
generated (i.e., endogenous)
thoughts encoded and
processed in the brain?
(Figs. 3–4)

Q1) Can we predict individual
differences in negative affectivity
with dynamic features of
spontaneous thought?
(Fig. 2)

Postscan survey for self-generated concepts

FightParents

Time

Valence

Self-relevance

Vividness

Safety-threat

B Experimental overview

Concept

generation

fMRI scan

Concept

reflection

×4

T1

Content dimension
• Valence
• Self-relevance
• Time
• Vividness
• Safety-threat

Self-reported
questionnaire

Postscan
survey

Start
End

Self-relevance

Tim
e

V
al

en
ce

Sadness

Bubble
Suicide
Society

Company
House

Bank

Bitcoin
Han River

Cry

Fail

Brother

C One participant’s example data

Rating trajectory from one run

Network representation

• Node color: Valence rating

• Node size: Degree centrality

D Example data (same participant, data from four runs)

Worries 

Winter

Pain

Classroom

Wait

Parents

Teacher

Hand mirror

Sadness

Clock

Disappointment

Fight

Father

Childhood

Mother

Girlfriend
Loneliness

Oneself

Friend

Transparency

Brother

Dressing table
Restroom

Regret

PositiveNegative

C
on

ce
pt

 r
ef

le
ct

io
n

Abuse Parents
Parents Fight

Fight Brother
15 s

15 s
15 s

Jittered intervals (3 to 9 s)
between words

×40

C
on

ce
pt

 g
en

er
at

io
n

Abuse

×40

Parents
Fight Brother

Mother
Family …

Mirror

Tear

25 s
25 s

25 s

Seed words Self-generated concept chain

T
as

ks

Aunt

Grandmother

Fig. 1. Research questions and experimental overview. (A) Main research questions and their corresponding result figures. (B) An experimental overview. Participants 
completed a battery of self-report questionnaires before the fMRI scans. During the fMRI scans, participants underwent the FAST, which consisted of three main parts—
concept generation, concept reflection, and postscan survey. The fMRI experiment had four runs, each of which included the concept generation and concept reflection 
tasks. For the concept generation task, we asked participants to report a word or phrase that came to their mind in response to the previous concept every 2.5 s starting 
from a given seed word. The seed words for the first session included family, tear, mirror, and abuse. After participants generated 40 concept-chain responses, we showed 
the two consecutive responses and asked them to think about the target (i.e.., the second) concept’s personal meaning for 15 s. After the scan, we asked participants to 
complete a postscan survey on the 160 self-generated concepts. We showed the two consecutive concepts again and asked participants to rate the target concept in 
terms of their valence, self-relevance, time, vividness, and safety-threat. (C) One participant’s example data are shown on the three-dimensional space of valence, self-relevance, 
and time. The dots indicate self-generated responses, and the pink line indicates data from one run. A red star indicates the start of the run, and the red dot indicates the 
ending point. (D) A network representation of one participant’s data. The dots represent the self-generated responses, and the arrows show the direction of the concept 
generation. The dot colors represent the averaged valence scores of each concept, and the dot size indicates the degree centrality (i.e., how many edges are connected 
to the node).
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As shown in Fig. 2B, the final predictive model showed significant 
prediction performance across four datasets; for the training dataset 
(n = 62) with LOSO-CV, the prediction-outcome correlation between 
the actual and predictive values was r = 0.481, P = 0.0005, two-tailed, 
one-sample t test; for the retest data (n = 30) with different seed words, 
r = 0.628, P = 0.0016 (with LOSO-CV, r = 0.501, P = 0.0105); for the 
web-based FAST experiment (n = 117), r = 0.492, P < 0.0001; and 
for the web-based FAST retest (n = 49) with different seed words, 
r = 0.569, P = 0.0001. After removing outliers identified with three 
SDs, the prediction-outcome correlation remained to be significant 
(r = 0.416, P < 0.0001, n = 115 after removing two outliers from the 
web-based FAST; r = 0.445, P = 0.0015, n = 48 after removing one 
outlier participant from the web-based FAST retest). Given that these 
three independent test datasets had slightly different experimental 
parameters, such as seed words and response modality, these results 
demonstrated the robustness of the task and the predictive model.

We then examined the standardized beta coefficients of the 12 
behavioral dynamic features to determine which predictors con-
tributed significantly to the final model of general negative affectivity 
(Fig. 2C). The beta coefficients indicated that the participants who 
showed (i) a higher variance of the safety-threat and valence scores; 
(ii) a higher transition probability from threatening to neutral states, 
(iii) a higher mean score on the time, vividness, and self-relevance 

dimensions; (iv) a higher transition probability from positive to 
negative states; and (v) a higher steady-state probability for the 
negative state were likely to report a higher level of general negative 
affectivity. Conversely, participants who showed (i) a higher variance 
on the self-relevance score, (ii) a higher transition probability from 
the negative or neutral to positive states, and (iii) a higher mean score 
on the valence dimension (i.e., more positive) tended to report a 
lower level of general negative affectivity. An additional analysis 
comparing the relative contributions of Markov chain–based features 
versus non–Markov chain features suggested that the Markov chain–
based features (i.e., state transition dynamics) explained a sub-
stantial amount of variance above and beyond the non–Markov 
chain features (table S5).

We also trained an additional predictive model with a subset of 
the content dimension—valence, self-relevance, and time, and thus, 
we called this reduced model a VST model—to see whether these 
three dimensions were enough to predict the level of general nega-
tive affectivity. We chose these three dimensions because valence 
and self-relevance were highly correlated with safety-threat and 
vividness, respectively (fig. S3A). The VST model also showed sig-
nificant predictions across four datasets with r  =  0.409 to 0.677, 
P = 0.0042 to P < 0.0001, and seven of eight selected features over-
lapped with the original full model features (fig. S4).
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Fig. 2. Markov chain–based predictive modeling of negative affectivity. (A) Analysis overview. The input features for the predictive modeling included the state 
transition and steady-state probabilities estimated with the Markov chain analysis and the mean and variance of the content dimension ratings. With these features, we 
developed predictive models of general negative affectivity, which we modeled with factor analyses. Although the actual factor models also included self-report 
questionnaires for a factor of general positive affectivity, here, we show the questionnaires only for the general negative affectivity factor for brevity. We used a LASSO 
regression as a fitting algorithm. For details about the analysis and questionnaires, please see Materials and Methods. (B) Model performance. From top to bottom, the 
plots show (i) the leave-one-participant-out cross-validated prediction results within the training dataset (n = 62, first session of the fMRI study) and three independent 
test results on (ii) the second session retest data of the fMRI study with different seed words (n = 30), (iii) the first session data of the FAST web study (n = 117), and (iv) the 
second session retest data of the FAST web study with different seed words (n = 49). The actual versus predicted negative affectivity factor scores are shown in the plots. 
Each dot represents each participant. We evaluated the model performance with a robust correlation. After removing outliers identified with three SDs, the prediction-
outcome correlation remained significant. NA, negative affectivity. (C) To interpret the final model, we examined the standardized beta coefficients of the input features 
of the model. From the LASSO regression, a total of 12 features were selected. The features in red indicate positive weights, whereas the features in blue indicate 
negative weights.
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Brain activation patterns during the concept 
reflection phase
To answer our second research question (Q2-1 in Fig. 1A; identifying 
the brain representations of the content dimensions of spontaneous 
thought), we first examined brain activation patterns while partici-
pants were reflecting on the self-generated concepts in the context 
of their conceptual associations. We decided to make the concept re-
flection phase our main target for the fMRI analyses before we conducted 
the experiment because of the possibility of high levels of head mo-
tion during the concept generation phase (due to speaking, but see 
fig. S5 for the comparisons of head motion between the two phases). 
In addition, the concept reflection phase, in which each trial was 15 s 
long, could generate the brain representations of self-generated 
concepts more effectively than the concept generation phase, in 
which each trial was 2.5 s long including speaking.

As shown in Fig. 3A, brain regions spanning the hippocampus, 
amygdala, and parts of the somatomotor network and default mode 
network engaged to a greater degree during conceptual self-reflection 
(warm color) compared to fixation baseline. In contrast, the visual 
network was engaged to a greater degree during baseline (cool color) 
than during conceptual self-reflection and thus appeared “deactivated” 
during reflection (see fig. S6 for the large-scale network definitions 
used for identification purposes).

Further investigation into the temporal shape of these hemo-
dynamic response patterns using a finite impulse response (FIR) 
model revealed that the visual cortex “deactivation” was driven by a 
transient increase in activity around 3 s after the stimulus onset, followed 
by a large decrease afterward (Fig. 3B). K-means clustering on the 
FIR signal across the brain showed that the visual cortex, some 
brain regions within the ventral attention network, and the thalamus 
formed a cluster. This cluster (purple in Fig. 3B) showed a transient 
activity right after the stimulus onset, likely reflecting perceptually 
guided and attentional orienting processes. Two additional clusters 
(green and yellow in Fig. 3B) emerging from the clustering analysis 
mainly consisted of default mode and limbic network, lateral 
prefrontal cortex, and hippocampus and amygdala regions. Both 
clusters showed a delayed peak of brain activity around 7 to 10 s 
after the stimulus onset. Another cluster (red in Fig. 3B) that had a 
large overlap with the somatomotor network showed a negative 
peak around 5 s after the stimulus onset. Given that the concept 
reflection did not involve any actual sensorimotor experience, this 
deactivation seemed reasonable. However, as shown in Fig. 3B, the 
brain activation level within this cluster showed a slow recovery and 
turned into positive activation toward the end of the trial. Further 
characterization of the clusters with meta-analysis database and 
cortical hierarchy suggested that our task strongly engaged brain 

A Brain activation patterns of the concept reflection task
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regions linked to autobiographical memory, conceptual processes, 
emotion, and autonomic regulation, which largely overlapped with 
the transmodal end in the principal gradient of cortical hierarchy 
(figs. S7 to S9).

Multivariate pattern–based predictive models of self-
relevance and valence
To further investigate our second research question (“can we iden-
tify and decode the brain representations of affective qualities of 
spontaneous thought?” in Fig.  1A), we developed whole-brain 
multivariate pattern–based predictive models for the content di-
mension ratings. To prepare training data, we grouped trials into 
quartiles representing four levels of each content dimension scale 
(for each participant) and then averaged the brain and rating data, 
resulting in four brain maps and four averaged rating scores per 
person for each dimension. After concatenating all participants’ 
data (n = 61), we trained principal components regression (PCR) 
models for each content dimension and estimated model perform
ance using two types of cross-validation methods—LOSO-CV 
and random-split cross-validation (RS-CV) (31, 32). The cross-
validated prediction performance was significant for self-relevance 
[correlation between actual and predicted ratings: with LOSO-CV, 
mean r = 0.304, z = 4.400, P < 0.0001, two-tailed, bootstrap tests, 
mean squared error (mse) = 0.155; with RS-CV, r = 0.276, mse = 
0.156; Fig. 4A], while other dimensions showed relatively poor pre-
diction performance, with LOSO-CV, mean r = 0.185, mse = 0.399 

for valence; mean r = 0.166, mse = 0.319 for safety-threat; mean 
r = −0.064, mse = 0.228 for time; and r = −0.015, mse = 0.182 for 
vividness. With RS-CV, mean r = 0.152, mse = 0.427 for valence; 
mean r = 0.147, mse = 0.323 for safety-threat; mean r = −0.012, 
mse = 0.223 for time; and r = −0.002, mse = 0.183 for vividness.

Among the dimensions that showed poor prediction performance, 
the valence result was unexpected because previous studies have 
shown reasonable performance in predicting positive versus nega-
tive emotional valence. For example, Chang et al. (33) reported that 
a whole-brain pattern–based marker could predict negative emo-
tion ratings induced by pictures with high prediction performance. 
Other studies also reported that regional brain activity patterns 
could classify the positive versus negative valence with significant 
classification accuracy (34, 35). However, unlike the previous studies, 
which used exogenous stimuli to evoke emotions, such as pictures 
(33), movies (34), or tastants (35), the current study used self-
generated, endogenous stimuli, which could have a potential impact 
on the semantic representations of emotional valence in the brain. 
Thus, we hypothesized that if we trained a predictive model only 
with the data from trials with low self-relevance scores, then we 
might be able to achieve a significant prediction performance 
similar to the previous studies. To test this hypothesis, we separately 
trained two models of valence, one for the low self-relevance trials 
(self-relevance scores ≤ 0.5) and the other for the high self-relevance 
trials (self-relevance scores > 0.5). Other analysis procedures were 
the same as the previous.
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Fig. 4. Multivariate pattern–based predictive models of self-relevance and valence. (A) Self-relevance model. The map shows the voxels that reliably contributed to 
the prediction of self-relevance scores based on bootstrap tests (thresholded at FDR q < 0.05, two-tailed). Thresholding was performed for the purpose of display; all 
weights were used in the prediction. We also pruned the map using two additional more liberal thresholds, uncorrected P < 0.01 and P < 0.05, two-tailed, to show the 
extent of activation clusters. The radial plot shows the relative proportions of overlapping voxels between the thresholded map and large-scale networks, given the total 
number of voxels within each network. (B) Valence model for the trials with low self-relevance scores (valence–low-self model). Insets show the two models’ un-
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As hypothesized, we found that the valence model trained only 
on the low self-relevance trials (named the “valence–low-self” model; 
Fig. 4B) showed a better and significant prediction performance, 
mean r = 0.307, z = 3.808, P < 0.0001, bootstrap test, mse = 0.362 
with LOSO-CV and r = 0.303, mse = 0.364 with RS-CV, than the 
valence model trained on the data with high self-relevance, mean 
r = 0.031, z = 0.403, P = 0.6872, mse = 0.448 with LOSO-CV and 
r = 0.060, mse = 0.426 with RS-CV. To further validate this valence–
low-self model, we tested the model on an independent study dataset 
from Chang et al. (33). We chose this study dataset because it used 
exogenous emotional stimuli to induce emotions [i.e., the International 
Affective Picture System (IAPS) pictures] and was publicly available 
from NeuroVault (https://identifiers.org/neurovault.collection:503). 
As shown in Fig. 5A, when we applied the valence–low-self model 

on the beta images corresponding to five-point negative emotion 
ratings ranging from 1 (neutral) to 5 (strongly negative), our model 
showed significant predictions across two independent datasets. 
The first dataset was the training data in the original study (n = 121, 
mean r = 0.225, P < 0.00001, two-tailed, bootstrap tests) (33), and 
the second dataset was the testing data in the original study (n = 61, 
r = 0.256, P = 0.0002). These results provided evidence for the 
generalizability of our valence–low-self model to emotions evoked 
with exogenous visual stimuli.

To further understand the neurobiological meaning and validity 
of the predictive models, we visualized the thresholded predictive 
maps of self-relevance (Fig. 4A) and valence–low-self models (Fig. 4B) 
based on bootstrap tests with 10,000 iterations and the false discovery 
rate (FDR) q < 0.05, identifying brain voxels that made reliable 
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contributions to the prediction. For the self-relevance model, multiple 
brain regions within the default mode and limbic networks appeared 
to be important, including the medial prefrontal cortex (MPFC), poste-
rior cingulate cortex (PCC), temporoparietal junction (TPJ), tem-
poral pole (TP), hippocampus, and nucleus accumbens (NAc), 
consistent with previous literature (16, 36–39). Similarly, the valence–
low-self model also identified important predictors within the default 
mode and limbic networks, such as the dorsomedial prefrontal 
cortex (DMPFC) and ventromedial prefrontal cortex (VMPFC), orbito
frontal cortex (OFC), and hippocampus. However, the predictive 
weight patterns within these regions were quite different between 
the self-relevance and valence–low-self models. For example, as shown 
in the insets of Fig. 4, which presented the unthresholded weights of 
the self-relevance and valence–low-self models within the MPFC, 
the self-relevance model showed a negative → positive → negative 
gradient from dorsal to ventral parts of the MPFC. In contrast, the 
valence–low-self model showed a negative → positive gradient from 
dorsal to ventral MPFC. The pattern similarity of the unthresholded 
predictive weights within the MPFC between the two models was 
low, r = 0.064. In addition to the default mode and limbic network 
regions, many voxels within the somatomotor and ventral and 
dorsal attention networks were among the important features of the 
models, suggesting that the information about the levels of self-
relevance and valence involves many brain regions distributed 
across multiple brain systems. z-scoring the outcome variables (i.e., 
self-relevance and valence scores) yielded similar predictive maps 
and results (fig. S10), suggesting that the within-subject variance 
was the main driver of the results.

Note that we did not further examine the predictive models of the 
other three dimensions, i.e., vividness, safety-threat, and time, given 
that the principal component analysis (PCA) results suggested three 
main principal components in the content dimensions. As shown 
in fig. S3A, the valence and safety-threat dimensions were highly cor-
related, and the self-relevance and vividness were also highly correlated. 
Therefore, by modeling valence and self-relevance, we should be able 
to cover the first two principal components. Regarding the time di-
mension, its predictive model did not perform well, and thus, we did 
not further examine the model here. In fig. S3B, we presented the uni-
variate general linear model results with the three principal components.

Idiosyncratic brain representations of emotional valence 
for high self-relevance trials
One of the intriguing observations in the previous section was the 
poor prediction performance of the valence model when it was 
trained on the high self-relevance trials. We hypothesized that 
valence information for the high self-relevance trials would be 
represented with more idiosyncratic brain activity patterns than for 
the low self-relevance trials. To test the hypothesis, we first tested 
whether an a priori multivariate pattern–based emotion marker 
provided a similar pattern of results. We used the picture-induced 
negative emotion signature (PINES) (33), which has shown its sen-
sitivity and specificity in predicting the level of negative emotions 
across multiple studies (33, 40). As presented in Fig. 5B, the results 
were consistent with our findings in the previous section—the PINES 
was able to predict the valence ratings only for the data from the low 
self-relevance trials, mean r = 0.194, P = 0.0171, two-tailed, bootstrap 
tests, but not for the high self-relevance trials, r = 0.081, P = 0.2813, 
although the difference was not significant, z = 1.260, P = 0.208, 
95% confidence interval = −0.163 to 1.266, two-tailed, bootstrap 

test with Fisher z-transformation. These results suggest that the 
data from low self-relevance trials had some shared pattern infor-
mation for valence common across participants, which the PINES 
could capture. In contrast, the valence information from high 
self-relevance trials cannot be decoded with the population-level 
emotion marker.

We then used an idiographic predictive modeling approach to 
quantifying the between-subject variability of predictive weights for 
high versus low self-relevance data. We first split the trials into high 
and low self-relevance groups (using 0.5 as a cutoff score). We then 
trained two valence models per person—one for high self-relevance 
trials and the other for low self-relevance trials using PCR with 
5-fold cross-validation. Although the prediction performances were 
not different between the high versus low self-relevance predictive 
models (t60 = 1.886, P = 0.0641, two-tailed, paired t test; the middle 
panel of Fig. 6A), the SDs of the predictive weights across partici-
pants were significantly higher in the high self-relevance models 
than the low self-relevance models (t211362 = 867.59, P < 0.0001; the 
right panel of Fig. 6A). Moreover, a group-level model trained on 
the high self-relevance data from all participants showed signifi-
cantly worse prediction performance than the idiographic model 
built individually with the same data (t60 = 10.005, P < 0.0001, two-
tailed, paired t test; the middle panel of Fig. 6A). These results pro-
vide additional converging evidence that the brain representations 
of emotional valence are shared across people when the stimulus is 
less self-relevant, but they become idiosyncratic across people when 
the stimulus is highly self-relevant.

We then examined where in the brain showed similar or distinct 
patterns of predictive weights between the valence models for high 
versus low self-relevance using a searchlight-based pattern similarity 
analysis method. As shown in Fig. 6B, the brain areas that showed 
low pattern similarity (in blue, Bayes factor in favor of null hypothesis 
BF01 > 6) were larger and more widely distributed across the 
whole brain than the brain areas that showed high pattern similarity 
(in red, Bayes factor in favor of alternative hypothesis BF10  >  6). 
Brain regions with low pattern similarity included cortical and sub-
cortical regions within the default mode and limbic networks, such 
as the VMPFC, perigenual anterior cingulate cortex, PCC, TP, 
hippocampus, and amygdala, and regions within the somatomotor 
network, such as supplementary motor area, right insula, and thala-
mus. Brain regions that showed high pattern similarity included the 
subgenual anterior cingulate cortex, left dorsal posterior insula, and 
right dorsal lateral prefrontal cortex. To summarize, these findings 
supported our hypothesis that the valence representations in the 
brain become more diverse and idiosyncratic across individuals as 
the stimuli become more self-relevant.

DISCUSSION
In this study, we replicated and significantly expanded our previous 
work using the FAST to assess the dynamic characteristics of the 
natural stream of thought (12). Through an fMRI experiment 
(n = 62) combined with the FAST, we aimed to test whether we 
could predict individual differences in negative affectivity with dy-
namics of spontaneous thought and whether we could identify and 
decode the brain representations and dynamics of phenomenologi-
cal characteristics of spontaneous thought. Our main findings can 
be summarized as follows: (i) We developed a Markov chain–based 
predictive model of negative affectivity that generalized across 
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multiple independent datasets. (ii) Reflecting on one’s associa-
tive concepts strongly activated brain regions related to auto-
biographical memory, emotion, and internal and conceptual 
processing. (iii) Predictive modeling of content dimension ratings 
of the self-generated concepts revealed that the brain representations 
of valence became more idiosyncratic as the level of self-relevance 
increased.

First, we successfully validated our new dynamic FAST, high-
lighting its great potential as a versatile thought-sampling research 
tool for psychological assessment and neuroimaging studies. Here, 
we showed that the FAST provided information about personally 
important thought topics and their semantic networks that could 
reveal each individual’s unique cognitive and phenomenological 
characteristics. The history of using free association as a psychological 
method to reveal one’s internal thoughts and emotional states goes 
back to the late 1800s (26–28). The method gained its increasing 
popularity since Freud (41), who used free association as the primary 
technique for his psychoanalysis, but modern psychology aban-
doned the method because of its questionable scientific validity and 

reliability. However, recent advances in computational tools and 
techniques provide an opportunity to revive the free association 
method with many potential use cases. For example, as shown in 
the current study, the dynamic modeling combined with machine 
learning has the potential to be used as an assessment tool for 
depression and anxiety in adjunct to self-report. Even in the absence 
of participant’s own self-report ratings, we previously showed in a 
behavioral FAST study that the affective dynamics of thought pre-
dicted individual differences in trait rumination (12), a common 
symptom of mood and anxiety disorders. Thus, if we can implement 
an automated sentiment analyzer into the analysis pipeline, we can 
shorten the task time markedly, providing a possibility to use the 
FAST as a web- or mobile-based monitoring tool for depression 
and anxiety. The FAST has the potential to be used for other clinical 
conditions, e.g., assessing spontaneous cognition in neurodegenerative 
disorders (e.g., Alzheimer’s disease), thought disturbances in psy-
chosis (e.g., derailment, flight of ideas, perseveration, etc.), or intrusive 
and repetitive thoughts in anxiety, obsessive-compulsive, or post-
traumatic stress disorders. Furthermore, the FAST fully embraces 
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Fig. 6. Idiographic predictive modeling of valence. (A) We used an idiographic predictive modeling approach to quantifying the between-participant variability of 
predictive weights for high versus low self-relevance data. We trained two valence models per person—the first model used data from the trials with the high self-relevance 
scores (>0.5; high SR) and the other used data from the trials with low self-relevance scores (≤0.5; low SR). In addition, we trained a group-level valence model by concatenating 
all participants’ high self-relevance data with LOSO-CV for comparison. The violin and box plots in the middle show the prediction performance of two idiographic models 
with 5-fold cross-validation and the group-level model with LOSO-CV. Each dot represents each participant. The histograms on the right show the distributions of the 
between-participant SD of predictive weights, and the inset violin plot shows the differences in the SD between two valence models across voxels. (B) We examined 
which brain regions displayed similar or distinct spatial patterns of predictive weights between two valence models with a searchlight-based pattern similarity analysis. 
For this, we first created a searchlight with a radius of five voxels and scanned it throughout the whole brain with a step size of four voxels. We then calculated correlation 
coefficients between the two models’ predictive weights within each searchlight. The red regions showed Bayes factor values in favor of having distinct patterns between 
two models (BF10 > 6), whereas the blue regions were the opposite, i.e., in favor of having similar patterns (BF01 > 6). The radial plot shows the relative proportions of 
overlapping voxels between the thresholded map and large-scale networks, given the total number of voxels within each network.
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ideas from emerging trends in neuroimaging studies, such as naturalistic 
and personalized approaches to high-dimensional neuroimaging 
data that emphasize multivariate representations and network-level 
dynamics. Together, our study provides a new research tool that will 
be useful for both behavioral and neuroimaging studies, creating a 
new possibility of capturing psychological and neurobiological 
processes previously challenging to study.

Second, our task’s primary brain targets were regions related to 
autobiographical memory, self-referential and emotion processing, 
and the monitoring and modulation of visceral and autonomic 
activity, including the MPFC and the medial temporal lobe structures 
within the default mode and limbic systems. While participants 
were reflecting on the self-generated concepts, these brain regions 
(referred to as “meaning-related” in fig. S8) showed a delayed but 
strong activation after the transient stimulus-driven activity within 
the early visual and attentional orienting networks. These distinct 
temporal patterns of brain activity suggest that participants paid 
attention to the stimulus at the beginning of the trial but then 
turned their attention inward and initiated endogenous cognitive 
and affective processes to reflect on the stimulus’ personal semantic 
meaning from a first-person perspective. These findings have signifi-
cant basic science implications for the dynamic interplay between 
perceptually coupled and internally guided (i.e., “imaginative”) 
thought—processes that are often assumed to be antagonistic but 
which must work together when attaching personal meaning to 
external stimuli, as we show here (21, 42–44).

Third, predictive modeling of content dimension ratings revealed 
that the brain representations of emotional valence became more 
idiosyncratic (i.e., person specific) as the level of self-relevance 
increased. When we trained the population-level predictive models, 
which capitalized on multivariate fMRI pattern information con-
served across individuals, we could only predict the self-relevance 
dimension ratings. The important predictors of the self-relevance 
model included multiple regions within the default mode and limbic 
system, including the MPFC, PCC, TPJ, TP, NAc, and hippocampus. 
Most of these brain regions have been implicated in self-referential, 
mentalizing, autobiographical memory, visceral monitoring, and 
autonomic regulation in the previous literature (16, 36–39, 45). For 
the valence dimension, we failed to develop a well-performing 
prediction model of valence when all data were combined for the 
modeling, but when we used only the trials with low self-relevance, 
we were able to develop a population-level prediction model of 
valence. This valence–low-self model also showed significant 
generalization to two independent datasets that used exogenous 
emotional stimuli (i.e., IAPS pictures), suggesting the existence of 
the generalizable valence codes in the brain when the emotional 
stimuli were less self-relevant. However, individuals exhibited 
idiosyncratic brain representations of valence when stimuli were 
highly self-relevant.

The findings of the idiosyncratic valence representations induced 
by self-relevant stimuli have important implications for emotion 
research. First, the results highlight the importance of the choice of 
stimuli and tasks for the study of emotion. Suppose that we only use 
exogenous stimuli to induce emotions, such as movies, music, or 
pictures generated or selected by researchers. In that case, we might 
not be able to fully capture the brain representations and mecha-
nisms of endogenous affective experiences. For this reason, we call 
for future research to develop and use experimental paradigms 
that focus more on self-generated and naturalistic stimuli to target 

endogenous and first-person experiences of emotions. Second, our 
results suggest that the valence codes in the brain can be modulated 
by the stimulus types and contexts, supporting the “affective modes” 
hypothesis (a brain subsystem can have different valence codes 
depending on affective states and contexts) rather than the “affective 
module” hypothesis (a brain subsystem is dedicated to a single 
valence code) (46). Our study showed that the self-relevance level 
could serve as a crucial affective context that can produce signifi-
cant changes in affective modes in the brain. Third, although the 
affective mode change appeared to occur in multiple brain regions 
distributed across the whole brain, regions within the default mode 
network and the limbic system, such as the TPJ, hippocampus/
amygdala, VMPFC, and TP, seem to play a central role in this mode 
change. This is likely due to their involvement in episodic and 
semantic memories and emotion processes (17, 24, 47). Episodic 
memory–related brain regions may provide rich autobiographical 
and personal contextual information to the semantic representations 
of valence, producing idiosyncratic representations of valence—i.e., 
turning a simple representation of good and bad (i.e., valence) into 
more complicated, nuanced, and personally unique valence repre-
sentations. In addition to the interaction between memory and 
emotion processes, visceral monitoring and autonomic modulation 
in these DMN and limbic regions may also play an essential role in 
modulating valence representations in the brain (21, 45). These 
DMN and limbic areas have been proposed to provide a subject-
centered reference frame by integrating various visceral inputs (48) 
and thereby serve as a basis for the subjective experience of “self-
relatedness” (45) [or “mineness” (49)]. The importance of these 
regions in processing self-generated concepts was further supported 
by the supplementary analyses shown in figs. S11 to S14 and table S6, 
but it still needs to be further examined in future studies [e.g., using 
the semantic encoding model (50) or state-space modeling (51)].

There are some considerations and limitations in the current 
study. First, some participants reported that the task was challenging 
to perform. One factor that can influence task difficulty is verbal 
fluency. Although the verbal fluency scores did not show significant 
correlations with the model prediction or input features (see table 
S7), it may be because our participants were mostly college students 
with similar levels of verbal fluency. Therefore, to generalize our 
findings to a general population, future studies should further 
investigate the influences of experimental parameters and verbal 
fluency on task performance and difficulty. Second, although we 
obtained the content dimension ratings on a continuous scale, our 
Markov chain analysis was based on the dynamics on the discrete 
state space, which could result in information loss. Although simple 
analysis methods, such as discrete state-space Markov chain analysis, 
could allow us to achieve better generalizability (based on the bias-
variance tradeoff) and better interpretability (52), future studies 
should test other analysis methods that can use the dynamic infor-
mation about the continuous state space. Third, our Markov chain–
based predictive model included a positive predictive weight for the 
time-mean variable, and this could seem inconsistent with the 
previous literature (53–55), which suggested a negative mood is 
associated with more frequent past-oriented spontaneous thought. 
Through further investigation (fig. S15), however, we found that the 
positive weight for the time-mean variable implied that the negative 
affectivity was associated with more recent-past oriented thoughts 
(rather than distant-past oriented thoughts). Therefore, our results 
were not inconsistent with previous studies. Instead, our results 
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suggest that a more careful treatment for the time dimension is 
required in future studies on spontaneous thought (e.g., using a 
continuous time scale). Fourth, through supplementary analyses 
(fig. S16), we found several differences between the high versus low 
self-relevance trial bins, including the distribution of valence and 
vividness scores, semantic distances, and the consistency of the 
reported concepts across individuals. On the basis of the data of the 
current study, we cannot determine which are more important 
factors that cause other observed differences, and therefore, future 
studies should aim to characterize self-relevant spontaneous thought 
in more depth. In particular, it would be important to modulate the 
level of self-relevance while keeping other factors the same to better 
understand the effects of self-relevance. Thus, more controlled 
experimentation could be helpful. Fifth, although we analyzed the 
fMRI data from the concept reflection period to minimize the issues 
related to motion confounds, the brain dynamics and activity 
patterns during the actual free association (i.e., the concept genera-
tion period) could be different from the concept reflection period. 
To address this issue, we will need creative methods to mitigate 
motion confounds during free association (but see fig. S5). Sixth, 
future studies should also test features and dimensions other than 
the five content dimensions to examine whether our findings on the 
effects of self-relevance on the valence prediction performance are 
specific to valence or generalize to other features of self-relevant 
concepts (e.g., visual or semantic features).

Overall, the current study opens up a new possibility of a quan-
titative assessment of the spontaneous thought dynamics and their 
brain representations. Our behavioral task and predictive models 
have the potential to be clinically useful because they can provide 
rich information about an individual’s cognitive and conceptual 
dynamic signatures. Furthermore, our findings suggest that neural 
representations of affective processes become more idiosyncratic 
when self-relevant stimuli are used to induce emotions, highlighting 
the importance of targeting endogenous cognitive and affective 
processes in the study of emotion. Together, our study leads us to a 
deeper understanding of how self-relevance modulates the affective 
representations in the brain—that is, what happens in our brain 
when the self comes to a wandering mind.

MATERIALS AND METHODS
Participants
For the FAST-fMRI study, 63 healthy, right-handed participants 
participated [age = 23.0 ± 2.5 years (means ± SD), 30 females]. 
Because the current study was the first fMRI study that used the 
FAST, we could not determine the sample size based on statistical 
power calculation. However, this sample size was larger than the 
top 90% sample sizes among the experimental fMRI studies published 
between 2017 and 2018 (56). The preliminary eligibility of partici-
pants was determined through an online screening questionnaire. We 
did not include participants with psychiatric, neurological, systemic 
disorders, or MRI contraindications. After the experiment, we 
excluded behavioral (and fMRI) data from one participant who 
generated too few responses. Thus, we used data from 62 participants 
in the behavioral data analysis. We also excluded one participant’s 
fMRI data due to insufficient MRI coverage. Thus, we used data 
from 61 participants in the fMRI analysis. For the retest session, 
30 participants (age = 22.8 ± 2.3 years, 15 females) revisited the 
experiment about 7 weeks (mean = 51.0 ± 16.8 days) after their first 

visit. For the web-based FAST study that was used for an independent 
test data of the Markov chain analysis, 117 participants (age = 22.6 ± 
2.6 years, 56 females) completed the web-based behavioral FAST 
experiment in the behavioral experiment room. Among them, 
49 participants (age = 23.0 ± 3.1 years, 24 females) revisited and 
conducted the second session. Their revisits were about 7 weeks 
(mean = 54.2 ± 8.5 days) after their first visits.

We recruited participants from the Suwon area in South Korea, 
and the experiments were conducted at the Center for Neuroscience 
Imaging Research, Sungkyunkwan University in Suwon, South 
Korea. The institutional review board of Sungkyunkwan University 
approved these studies. All participants provided written informed 
consent and were paid for their participation.

Self-report questionnaires
All participants completed a battery of self-report questionnaires to 
assess individual differences in mental health and affective traits and 
states. In the fMRI study, we included the 20-item Positive and Negative 
Affect Schedule (PANAS) (57) (which had two subscales—positive 
affect and negative affect), the 20-item Center for Epidemiologic 
Studies Depression (CES-D) (58), the 22-item Rumination Response 
Scale (RRS) (59) (which consisted of two subscales—brooding and 
depressive rumination), the 20-item trait version of the State-Trait 
Anxiety Inventory (STAI-T) (60), and the 30-item Mood and Anxiety 
Symptom Questionnaire-D30 (61) (which had three subscales—
general distress, anhedonic depression, and anxiety arousal) in the 
battery. Participants completed their responses to the questionnaires 
before the fMRI scan.

In the web study, we included the 20-item PANAS, the 20-item 
CES-D, a subset of the RRS (nine items from the “depressive 
rumination” subscale), and the 20-item STAI-T. These questionnaires 
overlapped with the fMRI study. In addition to these, we also 
included the Suicidal Ideation Questionnaire (SIQ) (62) (we only 
used two items, “I wished I were dead” and “I thought that life was not 
worth living”), the 3-item Loneliness Scale (LS) (63), the 5-item 
Satisfaction with Life Scale (64), and the 18-item Psychological Well-
Being Scale (65) (which had six subscales—autonomy, environmental 
mastery, personal growth, positive relations with others, purpose in 
life, and self-acceptance) in the battery. We used the Korean versions 
of these questionnaires that showed similar psychometric proper-
ties to the original questionnaires (66, 67). Descriptive statistics of 
the self-report questionnaires are reported in table S3.

FAST for the fMRI experiment
The FAST for the fMRI experiment comprised three parts—(i) 
concept generation, (ii) concept reflection, and (iii) postscan survey. 
For the concept generation phase, we asked participants to report a 
word or phrase that came to mind in response to the previous 
concept every 2.5 s starting from a given seed word inside the MRI 
scanner. The responses were collected through an MR-compatible 
microphone. Participants were asked to generate a total of 40 
consecutive concepts for each seed word, and we used four seed 
words for four runs total. We made the number of associations for 
each seed word much longer than our previous study (12), in which 
we collected only 10 consecutive concepts to obtain a larger number of 
personal concepts. The four seed words were “family,” “tear,” “mirror,” 
and “abuse” for the first session and “love,” “fantasy,” “heart,” and 
“pain” for the retest session. The seed words were selected on the 
basis of a presurvey of valence and self-relevance with a large set of 
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candidate words. We selected these seed words to make them evenly 
distributed on the valence and self-relevance dimensions. The orders 
of the seed words were fully randomized across participants.

During the concept reflection phase, we showed participants 
two consecutive concepts they generated in sequence. We made the 
second concept bigger than the first one to make it clear for the 
second concept to be the target word. Then, we asked participants 
to think about the target concept and personal context relevant to 
the association between the two concepts for 15  s. The stimuli 
remained on the screen for the whole duration (i.e., 15 s). We tried 
to give them enough time to think about their personal context, such 
as memory, that gave the concept a personal meaning. Between the 
trials, we showed a fixation cross with a jittered duration between 
3 and 9 s (i.e., interstimulus interval “baseline”). Intermittently, we 
showed 14 emotion words on the screen after the word presentation 
and asked participants to select one emotion descriptor closest to 
their current feeling. The emotion words were joy, distress, hope, 
fear, satisfaction, disappointment, pride, embarrassment, remorse, 
gratitude, anger, love, hate, and neutral. We conducted this emotion 
rating five times per run and collected 160 self-generated words per 
participant. We used these emotion rating data to validate the 
postscan survey results (fig. S2).

After the fMRI scan, participants completed a postscan survey 
on the 160 self-generated concepts in the behavioral experiment 
room. We showed the self-generated concepts again and asked 
participants to rate them on multiple content dimensions (13). The 
content dimensions evaluated emotional valence (how much posi-
tive or negative feelings does the concept evoke?), self-relevance 
(how much is the concept relevant to yourself?), time (which time 
point is most relevant to the concept, ranging from the past to the 
future?), vividness (how much vivid imagery does the concept 
induce?), and safety-threat (does the concept give rise to the feeling 
of safety or threat?). Similar to the concept reflection task, we showed 
two consecutive concepts in sequence with five content dimension 
questions and asked participants to answer the questions about the 
target concept (i.e., the second one). We used the visual analog 
scale. The valence, time, and safety-threat ratings were coded 
between −1 (negative, past, and threat, respectively) and 1 (positive, 
future, and safety), and 0 indicated neutral or present. The self-
relevance and vividness ratings were coded between 0 (not self-relevant, 
not vivid) and 1 (highly self-related, highly vivid).

FAST for the web experiment
The web-based FAST consisted of the concept generation and con-
cept survey tasks. The concept generation task was similar to that of 
the fMRI experiment, but this time, we provided 10 s for the concept 
generation because typing usually took longer than speaking. The 
seed words for the first and second sessions were the same as those 
of the fMRI experiment. After the concept generation task, partici-
pants completed the concept survey on three content dimensions—
valence, self-relevance, and time. We chose these three dimensions 
based on the PCA results shown in fig. S3A. The PCA results suggested 
that the valence and safety-threat dimensions were highly correlated, 
and the self-relevance and vividness were also highly correlated.

Markov chain–based predictive modeling of  
negative affectivity
To build predictive models of general negative affectivity, we used 
features obtained from a Markov chain analysis on the content 

dimensions. First, we divided the dimension scores into multiple 
discrete states. Our decision on how to define the discrete states of 
each dimension was determined a priori. We defined two discrete 
states for the dimensions that use a unipolar scale (i.e., self-relevance 
and vividness) and three discrete states for the dimensions that use 
a bipolar scale (i.e., valence, time, and safety-threat). In these bi-
polar dimensions, we assumed the middle range (i.e., near zero) 
to be psychologically meaningful and interpretable—for example, 
in the case of valence and safety-threat dimensions, we can interpret 
the middle range as “neutral,” and for the time dimension, we can 
interpret the middle range as “present.” In more detail, for the va-
lence, time, and safety-threat dimensions, which ranged from −1 to 
1, we divided them into three discrete states using −0.33 and 0.33 as 
the boundaries for defining discrete states (i.e., −1 to −0.33, −0.33 to 
0.33, and 0.33 to 1; for valence, the three discrete states were negative/
neutral/positive; for time, past/present/future; and for safety-threat, 
threatening/neutral/safe). The self-relevance and vividness dimen-
sions, ranging from 0 to 1, were divided into two discrete states (0 to 
0.5 and 0.5 to 1, which corresponded to low and high for both 
dimensions, respectively).

We then calculated the state transition and steady-state proba-
bilities for each dimension and each participant. The state transi-
tion probability refers to the probability of making transitions from 
one to another discrete state on each dimension. The steady-state 
probability refers to the probability of converging to one state when 
the transitions are sufficiently repeated. We obtained the steady-
state probability by multiplying the transition probability matrix by 
itself 10,000 times, which was always converged to one probability 
vector. In addition to these dynamic features from the Markov chain 
analysis, we also used each content dimension’s mean and variance 
as input features. Together, we used nine (=3 × 3) transition proba-
bility values and three steady-state probabilities for the valence, 
time, and safety-threat dimensions, four (=2 × 2) transition proba-
bilities and two steady-state probabilities for the self-relevance and 
vividness dimension, and mean and variance of all dimensions, cre-
ating a total of 58 input features (i.e., predictor variables). Most of 
these features showed a good level of consistency across different 
sets of seed words and different time points (table S1).

For the outcome variable, we conducted factor analyses to 
calculate general negative affectivity scores from a combination of 
self-report questionnaires. As an input for the factor analyses, we used 
z-scored subscale scores because all questionnaires used different 
scales. We used a target oblique rotation for a two-factor model, given 
that we had a priori knowledge about what each questionnaire measures 
between positive versus negative affectivity. The general negative 
affectivity factor consisted of questionnaires related to negative affect, 
general distress, anxiety, and depression (table S2), which was then 
used as the outcome variable for the predictive modeling.

With these predictor and outcome variables, we developed a 
predictive model of the negative affectivity using LASSO regression. 
We used the first session data of the fMRI study (n = 62) as a train-
ing dataset and tested the developed model on the second session 
data of the fMRI study (n = 30) and two session (test and retest) 
datasets of the web study (n = 117 and 49, respectively). We deter-
mined the number of the predictor variables for the final model 
based on the LASO-CV performance in the training set with the 
LASSO regularization.

To test the prediction model on independent test datasets, we 
calculated the predicted levels of general negative affectivity using a 
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dot product between the Markov chain features calculated from new 
datasets and the model weights. To evaluate the model performance, 
we used a robust correlation between the actual and predicted levels 
of general negative affectivity. We did not use mean squared error 
or R-squared to evaluate model performance as recommended in 
(31), given that the scale of outcome variables was different between 
the training and test datasets because they used different sets of 
self-report questionnaires.

fMRI data acquisition and preprocessing
We collected MRI data using a 3T Siemens Prisma scanner at 
Sungkyunkwan University. We acquired high-resolution T1-weighted 
structural images and functional echo-planar imaging (EPI) with 
repetition time (TR) = 460 ms, echo time (TE) = 27.2 ms, multiband 
acceleration factor = 8, field of view = 220 mm, 82 by 82 matrix, 2.7-mm 
by 2.7-mm by 2.7-mm voxels, 56 interleaved slices, and number of vol-
umes = 2608. Stimulus presentation and behavioral data acquisition 
were controlled using MATLAB (MathWorks, Natick, MA) and 
Psychtoolbox (http://psychtoolbox.org/).

Data preprocessing was performed with SPM12 (Wellcome Trust 
Centre for Neuroimaging) and FSL (the Oxford Centre for Func-
tional MRI of the Brain). For structural T1-weighted images, we 
coregistered the T1 images to the functional image using the first 
single-band reference (SBRef) image and segmented and normalized 
them to the MNI space. For EPI images, we removed the initial 
volumes (20 images) of fMRI data to allow for image intensity 
stabilization. We also identified outliers for each image and all slices 
based on Mahalanobis distances and the root mean square of 
successive differences to remove intermittent gradient and severe 
motion-related artifacts that are present to some degree in all fMRI 
data. For the Mahalanobis distance–based outlier detection, we 
computed Mahalanobis distances for the matrix of concatenated 
slice-wise mean and SD values by volumes across time. Then, we 
identified the images that exceed 10 mean absolute deviations based 
on moving averages with full width at half maximum (FWHM) of 
20 images kernel as outliers. With the root mean square of succes-
sive differences across volumes, images that exceeded three SDs 
from the global mean were identified as outliers. Each time point 
identified as outliers by either outlier detection method was included 
as nuisance covariates.

We then conducted (i) motion correction (realignment) using 
the SBRef image as a reference, (ii) distortion correction using FSL’s 
topup function, (iii) normalization to the MNI space using the 
parameters from the T1 normalization with the interpolation to 
2-mm by 2-mm by 2-mm voxels, and (iv) smoothing with a 5-mm 
FWHM Gaussian kernel. Because data from two participants showed 
poorer quality images after the distortion correction, we used 
distortion-uncorrected images for these two participants.

fMRI single-trial analysis
We used the single-trial analysis approach. We estimated single-
trial response magnitudes for each brain voxel using a general 
linear model design matrix with separate regressors for each trial, as 
in the “beta series” approach (68). We constructed each trial re-
gressor for the concept reflection duration with a boxcar convolved 
with SPM12’s canonical hemodynamic response function. We 
also included a regressor for intermittent emotion ratings for each 
run. We concatenated four runs’ data during the concept reflection 
task for each participant and added the run intercepts. In the design 

matrix, we also included the nuisance covariates, including (i) 
“dummy” coding regressors for each run (an intercept for each 
run), (ii) linear drift across time within each run, (iii) 24 head 
motion parameters (six movement parameters including x, y, z, roll, 
pitch, and yaw, their mean-centered squares, their derivatives, and 
squared derivative) for each run, (iv) indicator vectors for outlier time 
points, and (v) five principal components of white matter and cere-
brospinal fluid signal. With this design matrix, we ran the first-level 
analysis using SPM12 with a high-pass filter of 180 s. Because 
single-trial estimates could be strongly affected by acquisition arti-
facts that occur during that trial (for example, sudden motion, scanner 
pulse artifacts, etc.), we calculated trial-by-trial variance inflation 
factors (VIFs; a measure of design-induced uncertainty due to collin-
earity with nuisance regressors) using the design matrix, and any trials 
with VIFs that exceeded three were excluded from the following 
analyses. The average number of trials excluded because of high VIFs 
was 2.902, with the SD of 3.081.

Large-scale functional network overlap analysis
The radial plots in Figs. 3, 4, and 6 show the relative proportions of 
the number of overlapping voxels between the thresholded map 
and each network (or region), given the total number of voxels 
within each network (or region). We used the Buckner group’s 
parcellations to define large-scale functional brain networks, includ-
ing seven networks within the cerebral cortex (69), cerebellum (70), 
and basal ganglia (71). We also added the thalamus, hippocampus, 
and amygdala from the SPM anatomy toolbox and the brainstem 
region, as shown in fig. S6.

Clustering analysis using the FIR model
For the clustering analysis based on the temporal patterns of brain 
activity, we estimated the TR-level brain activity patterns using the 
FIR model (Fig. 3, B and C). We modeled 35 TRs (=16.1 s) from the 
concept reflection trial onset. We used the thresholded univariate con-
trast map (at P < 0.05, Bonferroni correction) for the concept reflec-
tion duration as a mask. We then conducted k-means clustering on the 
voxels within the mask based on the temporal patterns of brain activity 
across 35 TRs. We selected the number of clusters k that maximized 
the silhouette value of the clustering solution using “evalclusters.m” 
function included in the MATLAB statistical toolbox. To show the 
time course of the cluster brain activity, as in Fig. 3B, we plotted the 
averaged beta weights within each cluster at each time point.

Predictive modeling of content dimensions
To develop multivariate predictive models of each content dimen-
sion, we used the whole-brain beta images from the single-trial 
analysis after excluding trials with VIFs that exceeded three and 
self-report ratings of content dimensions. We first divided the trials 
into quartiles based on the content dimension scores and averaged 
the content dimension ratings and fMRI data for each level, creating 
the quartile training data for each participant. In these data, the 
outcome variable was still continuous because we used the quartile 
averages. For each dimension, a total of 244 images [4 (images per 
participant) × 61 (number of participants)] were created for 
model training. Some dimensions had less than 244 images due to 
the skewed distribution of some participants’ ratings or the removal 
of some trials with high VIFs. We used PCR to train multivariate 
pattern-based predictive models. To obtain unbiased estimates of 
model performance, we used two different types of cross-validation 

D
ow

nloaded from
 https://w

w
w

.science.org on A
ugust 31, 2022

http://psychtoolbox.org/


Kim et al., Sci. Adv. 8, eabn8616 (2022)     31 August 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

14 of 16

methods. The first was the LOSO-CV, in which we derived a 
predictive map from all participants’ data except one participant 
and used the hold-out participant’s data for the model testing. The 
other method was the RS-CV (32), in which we randomly chose 
20% of participants’ data as the hold-out data for each iteration. We 
then used 80% of randomly selected participants’ data to derive a 
predictive map and the 20% hold-out data for the model testing for 
each iteration. We repeated this procedure 50 times. We evaluated 
model performance with (i) averaged within-participant correlation 
between actual and predicted ratings and (ii) averaged within-
participant mean squared error. To test whether the mean within-
participant prediction-outcome correlation was significantly larger 
than zero, we conducted bootstrap tests with participant-level 
prediction-outcome correlation values with 10,000 iterations. For 
the predictive model of valence only for low self-relevance trials 
(i.e., the valence–low-self model; Fig. 4B), we divided the data 
into trials with high versus low self-relevance scores using 0.5 as a 
threshold before making the quartile data. After that, all the model 
training and testing steps were the same as above.

To help the feature-level interpretation of the predictive models, 
we conducted bootstrap tests with 10,000 iterations. We randomly 
sampled participants with replacement for each iteration and trained 
a PCR model using the resampled dataset. On the basis of the sam-
pling distribution of bootstrapped predictive weights, we identified 
features that consistently contributed to the prediction with P values. 
For display, as in Fig. 4, we thresholded the map with the FDR 
q < 0.05 and pruned the results using two additional more liberal 
thresholds, uncorrected voxel-wise P < 0.01 and P < 0.05, two-tailed.

To test our valence–low-self model on an independent study 
dataset, as in Fig. 5, we obtained predicted ratings using a dot product 
of each vectorized test image data of the previous study with model 
weights. We used averaged within-participant correlation between 
actual and predicted ratings to evaluate the prediction performance. 
We did not use the mean squared error because the units differed 
between the training and testing datasets. Similarly, to test the PINES 
on our data, we calculated pattern expression values with a dot 
product between the PINES weights and the test data of high and 
low self-relevant trials separately. As the modeling approach we 
mentioned above, we first separated one individual’s trials into high 
or low self-relevant data using 0.5 as a threshold first and divided 
them into quartiles again based on the valence ratings. Then, we 
applied averaged beta images and averaged valence scores within 
each quartile to the PINES. We used averaged within-participant 
prediction-outcome correlation as the evaluation measure.

Idiographic predictive modeling of valence
To quantify the between-subject variability of predictive weights for 
data across the whole brain with high versus low self-relevance, we 
used the idiographic predictive modeling approach. Similar to the 
group-level predictive modeling, we used the beta images obtained 
from a single-trial analysis and content dimension ratings. First, we 
divided trials into high and low self-relevance groups using 0.5 as a 
cutoff score. For each participant, we trained two predictive models 
of valence with these two groups of trials separately using PCR with 
5-fold cross-validation.

We also conducted a searchlight-based pattern similarity analy-
sis to identify brain areas that showed similar or distinct patterns of 
predictive weights between two types of valence prediction models. 
For this, we created a searchlight with a radius of five voxels and 

scanned it throughout the whole brain with a step size of four voxels. 
We then calculated correlation coefficients between two models’ 
predictive weights within each searchlight and transformed r to 
z using Fisher’s transformation. We added the z values to cubes that 
had one side of four voxels and were located at the center of each 
searchlight across the whole brain with no overlapping voxels be-
tween cubes. We smoothed the map with a 3-mm FWHM Gaussian 
kernel and performed a one-sample t test, treating participants as a 
random effect. We also calculated the JZS Bayes factors using the 
method proposed in (72).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn8616

View/request a protocol for this paper from Bio-protocol.
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