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Fig. S1. Valence-induced heart rate changes during the concept reflection phase. 
(A) The plots show the time-course of grand-average heart rate changes (∆HR; in beats per
minute [BPM]) during the concept reflection phase. Shading represents the standard error of the
mean (s.e.m.) across participants. (B) The heat maps show the concatenated grand-average	∆HR
across all participants for different levels of valence and safety-threat.
Main finding: Multiple time-points showed significant decreases in heart rate for the negative 
vs. neutral (or positive) and threat vs. neutral contrasts.  
Methods. Electrocardiogram (ECG) activity was recorded using MR-compatible electrodes 
(Biopac Systems, Goleta, CA) placed on the right and left clavicles and lower left abdomen area. 
We analyzed ECG data from the first session of the fMRI experiment (n = 62). We discarded 15 
participants’ data: 5 participants due to recording-related issues and 10 participants due to 
abnormal BPM ranges caused by MR-related noise. Thus, we analyzed data from 47 participants. 
The ECG data were sampled at 2000Hz during the scan. We removed MR-induced noise from 
the ECG data with a band-pass filter (0.6 ~ 10 Hz) and a comb filter with a multiple of a 
reciprocal number of TR (1/0.46 Hz). Next, we used the PhysIO Toolbox (73) 
(https://www.nitrc.org/projects/physio/) to find peaks and calculate the inter-beat interval (IBI). 
The IBI data were down-sampled (25 Hz) and low-pass filtered (0.5 Hz). We then calculated 

N = 62

Fig S1. Heart rate changes during the concept reflection according to the concept dimension
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beats per minute (BPM) by dividing 60 seconds by the IBI (60/IBI). To examine the heart rate 
changes induced by the levels of valence and safety-threat scores, we divided the data into three 
groups—positive, neutral, and negative for valence, and safety, neutral, and threat for safety-
threat—using 0.33 and -0.33 as the boundaries for defining discrete states. We grand-averaged 
the HR data using 3 seconds before the onset as the baseline and 30 seconds after the onset as an 
epoch. We conducted paired t-tests for each time point, and the green, yellow, and purple dots 
(or lines) in the plots in (A) show the time points that yielded significant t-test results, 
uncorrected P < 0.05, two-tailed, paired t-test, n = 47. 



 

Fig. S2. The relationship between the in-scanner emotion ratings and post-scan valence ratings.  
The plot shows the distribution of valence ratings (from the post-scan survey) for different emotion categories of self-generated 
concepts (n = 62). The emotion category data were collected from intermittent emotion ratings during the concept reflection task 
inside the scanner. For emotion ratings, we intermittently displayed 14 emotion words on the screen after 15 seconds of concept 
presentation, and asked participants to select one emotion descriptor closest to their current emotion. We obtained these emotion 
ratings five times per run. The box was bounded by the first and third quartiles, and the whiskers stretched to the highest and lowest 
values within median ± 1.5 interquartile range. 

Fig S2. Relationship between in-scanner emotion ratings and valence ratings in post-scan survey
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Fig. S3. Principal components of the content dimensions and their univariate general linear model maps. 
(A) We conducted the principal component analysis on the five content dimensions (n = 61) and plotted three principal components
(PCs), which explained 89.4% of the total variance. The valence and safety-threat dimensions showed high loadings on the first PC,
while the self-relevance and vividness dimensions showed high loadings on the second PC. The time dimension showed a high
loading on the third PC. (B)-(D), The general linear model (GLM) results for the three principal components. To identify brain regions
correlated with the principal component scores, we regressed the single-trial images on the three principal component scores for each
participant. We then performed a one-sample t-test on the 61 beta images (one beta map per participant) and thresholded the map with
uncorrected P < 0.001, two-tailed, and pruned the results using two additional, more liberal thresholds, P < 0.01 and P < 0.05, two-
tailed.



 

Fig. S4. Markov chain-based predictive model of negative affectivity based on valence, self-relevance, and time (VST model). 
(A) We trained an additional Markov chain-based predictive model of general negative affectivity with the valence, self-relevance,
and time dimensions only to test whether these three dimensions were enough to predict the level of general negative affectivity. Other
analysis procedures were identical to the main Markov chain-based predictive model with all the five content dimensions (Fig. 2). The
total number of input features decreased from 58 to 36. (B) A total of 8 features were selected. All features except for “valence-mean”
overlapped with the selected features in the original model. (C) VST model performance. From top to bottom, the plots show 1) the
leave-one-participant-out cross-validated prediction results within the training dataset (n = 62, first session of the fMRI study), and

Fig S4. Revised model for the dynamic of concept dimensions in spontaneous thoughts predicts general negative affectivity 
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three independent test results on 2) the second session re-test data of the fMRI study with different seed words (n = 30), 3) the first 
session data of the FAST-web study (n = 117), and 4) the second session re-test data of the FAST-web study with different seed words 
(n = 49). The actual versus predicted negative affectivity factor scores are shown in the plots. Each dot represents each participant. We 
evaluated the model performance with robust correlation between the actual and predicted levels of general negative affectivity.  

Main findings: The VST model also showed significant predictions across four datasets, and seven out of eight final features of the 
VST model overlapped with the original full model (Fig. 2C). 



 

Fig. S5. Framewise displacement during the concept generation and reflection phases.  
We investigated head motion during the concept generation and reflection phases with framewise 
displacement (FD). We averaged the TR-level framewise displacement values separately for 
concept generation and concept reflection runs. Both the histogram and violin plots show the 
averaged FD values. The histogram plots show the distribution of the averaged FD values, 
whereas the violin plots show the median and outliers more clearly. In the violin plot, each dot 
represents each individual’s averaged FD value.  
Though we originally predicted that the concept generation phase would show a higher level of 
head motion due to speaking, the result did not show a significant FD difference between the 
phases, t60 = 0.996, P = 0.322, two-tailed, paired t-test. This smaller-than-expected difference in 
motion suggests that it would be possible to analyze the fMRI data from the concept generation 
phase, which is an exciting avenue for future studies. However, while FD values were not 
different between the phases, speaking-induced systematic motion effects in the fMRI data may 
still exist, which should be carefully examined before analysis of the concept generation phase 
data.  
In addition, we found one outlier participant with high FDs in both phases. To examine the 
effects of the outlier participant on our main findings, we conducted fMRI pattern-based 
predictive modeling of valence and self-relevance again. After removing the outlier participant, 
we obtained results similar to our original findings, suggesting that our main findings are robust 
to the motion outlier. The prediction performance after versus before removing the outlier 
participant is as follows.  
After removing the outlier participant, predicting with leave-one-subject-out cross-validation: 

valence with high self-relevant trials: mean r = 0.009, z = 0.120, P = 0.9046 
valence with low self-relevant trials: mean r = 0.343, z = 4.406, P < 0.0001 
self-relevance: mean r = 0.281, z = 4.033, P < 0.0001  

Before removing the outlier participant, predicting with leave-one-subject-out cross-validation 
(as reported in the original manuscript):  

valence with high self-relevant trials: mean r = 0.031, z = 0.403, P = 0.6872 
valence with low self-relevant trials: mean r = 0.307, z = 3.808, P < 0.0001 
self-relevance: mean r = 0.304, z = 4.400, P < 0.0001  

Fig. S5. Framewise displacement during the concept generation and reflection phases
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Fig. S6. Large-scale functional networks and regions for the radial network plots. 
To make the radial plots in the main figures (Figs. 3, 4, and 6), we used Buckner’s group 
parcellations to define large-scale functional brain networks, including 7 networks within the 
cerebral cortex (69), cerebellum (70), and basal ganglia (71). We also added the thalamus, 
hippocampus, and amygdala from the SPM anatomy toolbox, as well as the brainstem region. 
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Fig. S7. 26 main regions-of-interest (ROIs) from the basic contrast map of concept reflection.   
dACC, dorsal anterior cingulate cortex; MFG(B), bilateral middle frontal gyrus; MTS(R), right middle temporal sulcus; STS(R), right 
superior temporal sulcus; aINS(B), bilateral anterior insula; PAG, periaqueductal gray; VMPFC, ventromedial prefrontal cortex; 
DMPFC, dorsomedial prefrontal cortex; DLPFC(L), left dorsolateral prefrontal cortex; TPJ(L), left temporal parietal junction; PCC, 
posterior cingulate cortex; IFG(B), bilateral inferior frontal gyrus; LOC, lateral occipital cortex; TP(B), bilateral temporal pole; 
HC/AMY, hippocampus/amygdala; AMPFC, anterior medial prefrontal cortex; S2(B), bilateral secondary somatosensory cortex; 
dpINS(B), bilateral dorsal posterior insula; ITG(B), bilateral inferior temporal gyrus.  

Fig S7. 26 regions of interest obtained from the FIR modeling
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Fig. S8. Understanding clusters with large-scale networks and Neurosynth decoding.  
To interpret the functional meaning of the clusters, we examined the clusters with large-scale functional networks and a term-based 
decoding analysis based on an automated large-scale meta-analysis, Neurosynth (74). The first clusters showed the largest correlations 
with the meta-analytic maps with functional terms including “visual,” “sighted,” and “navigation.” The second and third cluster 
showed the largest correlations with the terms “autobiographical,” “remembering,” and “emotional.” The fourth cluster was correlated 
with the terms “somatosensory,” “stimulation,” and “sensory.” Based on the decoding results, we combined and named the second and 
third clusters to be “meaning-related” because many of the brain regions within these clusters have been shown to be involved in 
semantic processing and autobiographical memory. In addition, we named the first cluster “stimulus-driven,” and the fourth cluster as 
“sensorimotor,” respectively. For the radial plot, Va, ventral attention; Da, dorsal attention, So, somatomotor; Vi, visual; BS, 
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brainstem; HC/Amy, hippocampus/amygdala; Th, thalamus; De, default; Fp, frontoparietal; Li, limbic. For the brain regions, aINS, 
anterior insula; dACC, dorsal anterior cingulate cortex; MFG, middle frontal gyrus; MTS, middle temporal sulcus; STS, superior 
temporal sulcus; PAG, periaqueductal gray; VMPFC, ventral medial prefrontal cortex; ; DMPFC, dorsal medial prefrontal cortex; 
DLPFC, dorsolateral prefrontal cortex; PCC, posterior cingulate cortex; IFG, inferior frontal gyrus; LOC, TPJ, temporal parietal 
junction; lateral occipital cortex; S1/S2, primary and secondary somatosensory cortex; dpINS, dorsal posterior insula; AMPFC, 
anterior medial prefrontal cortex; ITG, inferior temporal gyrus. For the locations of each region, please see fig. S7.



 

Fig. S9. Neurobiological assessment of clustering results. 
We assessed whether our clustering results and their naming (shown in fig. S8) were 
neurobiologically and functionally meaningful rather than arbitrary. In addition to the term-based 
decoding analysis reported in fig. S8, here, we interpreted our clustering results with the 
principal gradient (75) and the meta-analytic basal ganglia parcellations (76). (A) The brain map 
on the left shows the principal gradient from unimodal to transmodal brain regions across the 
whole brain (75). We re-calculated the principal gradient map using our resting-state dataset (n = 
56; 7-min resting scan) to create a volumetric principal gradient image that includes the 
subcortical regions. The plot on the right shows the proportions of overlapping voxels between 
the 10-bin maps of the principal gradient and our three clusters. (B) The basal ganglia map on the 
left shows the functional parcellations based on meta-analysis (76). The figures in the middle and 
right panels show our clustering results mapped onto the basal ganglia.  
Main findings: Our region clustering and subsequent naming were largely consistent with the 
principal gradient in the cortex and the meta-analysis findings in the basal ganglia. For example, 
the “meaning-related” cluster largely overlapped with the transmodal end in the principal 
gradient of cortical hierarchy and the parts of the basal ganglia related to social, language, and 
executive functions. The “stimulus-driven” and “sensorimotor” clusters overlapped with the 
unimodal end of the cortical principal gradient and the basal ganglia parcellations for stimulus 

Fig S9. Striatum mapping of the clusters and prior meta-analysis research
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value and sensorimotor processes, respectively. These findings support that our clustering 
analysis resulted in neurobiologically meaningful clusters, providing a basis for further analyses 
of our data and functional interpretations of our findings. 



 

Fig. S10. Comparing predictive models of z-scored outcome variables with the original results from Fig. 4. 

To examine the potential influences of individual differences in the scale use on the predictive modeling results, we additionally 
conducted the same fMRI-based predictive modeling analyses (as in Fig. 4) with the z-scored content dimension scores. To this end, 
we z-scored the outcome variables (i.e., self-relevance and low-self valence scores) before grouping the data into quartiles, and then 
we trained the same models in Fig. 4 (i.e., predictive models of self-relevance and valence in low-self trials). The prediction results 
indicated that the two models (i.e., without vs. with z-scoring) showed similar prediction performances—for the self-relevance model, 
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the correlation between actual and predicted ratings with leave-one-subject-out cross-validation (LOSO-CV) was mean r = 0.286, z = 
4.440, P < 0.0001, two-tailed bootstrap test, mse = 0.669 (cf. the previous model performance was mean r = 0.304, z = 4.400, P < 
0.0001, mse = 0.155; please note that the mean squared error [mse] is different as the mse is scale-dependent), and for the valence 
model trained on the low self-relevance trials (named ‘valence-lowself’ model), mean r = 0.316, z = 4.5695, P = 0.0001, two-tailed 
bootstrap test, mse = 0.630 (cf. the previous model performance was mean r = 0.307, z = 3.808, P < 0.0001, mse = 0.362). In addition, 
the weight maps between the two models showed highly similar patterns. The bootstrap tests of the predictive weights identified 
similar regions as significant (at FDR q < 0.05), and the spatial correlations between two maps (i.e., without vs. with z-scoring) were 
high—for the self-relevance model, the spatial correlation between the two weight maps was 0.656, and for the valence-lowself 
model, the spatial correlation was 0.778. These results suggest that the individual differences in the scale use were not an important 
factor for our main findings. 



 

Fig. S11. Relative frequency of state transition (or relative numbers of semantic segments) across the brain. 
(A) Analysis overview. To examine the relative frequency of state transition (or the relative numbers of semantic segments) of
different regions based on their multivariate pattern information, we used a data-driven approach to detecting state boundaries with the
Hidden Markov Model (HMM) (77). For details about the analysis steps, please see below. (B) Unthresholded group-level average of
the state transition frequency. This map shows the group-averaged z-scores based on the total number (k) of state transitions across
four runs. The cool color indicates a smaller number of state transitions, whereas the warm color indicates a larger number of state
transitions. (C) Thresholded map of the relative frequency of state transition with FDR corrected q < 0.05, one-sample t-test, two-
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tailed. To better show the extent of the significant areas, we pruned the results using two additional, more liberal thresholds, 
uncorrected voxel-wise P < 0.01 and P < 0.05, two-tailed. The radial plot shows the relative proportions of overlapping voxels 
between the thresholded map and large-scale networks. Va, ventral attention; Da, dorsal attention, So, somatomotor; Vi, visual; BS, 
brainstem; Hi/Am, hippocampus/amygdala; Th, thalamus; De, default; Fp, frontoparietal; Li, limbic. (D) We conducted bootstrap tests 
for the 26 regions-of-interest (ROIs) obtained from the basic contrast map of the concept reflection-related brain activity. The plot 
shows the group-average z-scores with the standard error of the mean (s.e.m.). *P < 0.05, **P < 0.01, ***P < 0.001, two-tailed, 
bootstrap test (for the details of results, see table S6). For full region names, please see fig. S7.  
Methods: To detect the state boundaries of concept representation for each run, we used a version of the Hidden Markov Model 
(HMM) implemented by previous work (77). This HMM version is optimized for detecting boundaries based on multi-voxel pattern 
information of brain regions. For the current analysis, we applied the HMM to each participant’s single-trial data. As shown in (A), we 
scanned a spherical searchlight with a radius of 5 voxels (= 10 mm) across the whole brain with a step size of 4 voxels, resulting in 
3,297 spherical searchlights in total. For each searchlight, we detected segment boundaries using the HMM with segment numbers 
ranging from k = 2 to 12. We used k = 12 as the upper limit because any number of state transitions (k) larger than 12 produced too 
many one-trial only comprised segments, and with k	≤	12, we were able to keep the number of one-trial segments to less than 1% of 
the number of total segments. The average difference in pattern similarity (i.e., spatial correlation) was calculated between intra- vs. 
inter-segment trials for each searchlight, each segmentation solution, and each k. We used this average difference as an indicator of 
how well the segmentation solutions captured the neural state transitions. We selected the k that produced the largest difference in 
pattern similarity as the optimal k for a certain searchlight, run, and participant. We then added the optimal ks from four runs for each 
participant, entered the value in the 4	×	4	×	4 voxel cube for each searchlight, z-scored the sum of k values across the whole-brain, 
and applied smoothing with a 3-mm FWHM Gaussian kernel. For the final step, we conducted one-sample t-tests on the normalized k 
maps and thresholded the results with FDR q < 0.05. We also performed an ROI analysis with bootstrap tests (10,000 samples) to 
determine whether the normalized optimal k differed from zero.  
Main findings: Multiple brain regions within the limbic system, including the ventromedial prefrontal cortex (VMPFC), orbitofrontal 
cortex, medial temporal lobe, and temporal pole (TP), consistently showed more frequent state transitions (i.e., finer-grained semantic 
segmentation structure) than other brain regions. Bootstrap tests on the 26 regions-of-interest (ROIs) selected from the previous 
analyses (see fig. S7) provided a similar result—the VMPFC and TP showed the largest number of segments among all ROIs (Fig. 4D 
and table S6), and the hippocampus and amygdala also showed a larger number of segments than other regions. In addition to the 
limbic areas, brain regions within the visual and ventral attention networks, including the early visual area, lateral occipital cortex 
(LOC), anterior insula, and mid-cingulate cortex, also showed larger numbers of segments compared to other brain regions. On the 
other end of the scale, multiple brain regions within the somatomotor, dorsal attention, and default mode networks showed small 
numbers of segments, including sensorimotor cortex, dorsolateral prefrontal cortex (DLPFC), posterior cingulate cortex (PCC), and 
temporal parietal junction (TPJ).  



 

When we compared these findings with the results from the previous study (77) that used exogenous movie stimuli, there were 
consistent as well as inconsistent patterns of results. The consistent results between (77) and the current study include more segments 
in the visual cortices and less segments in the PCC and the TPJ (which was near the angular gyrus), which can be interpreted as 
integrating semantic information along the cortical hierarchy, from the unimodal sensory to higher-order transmodal brain regions. 
However, unlike the previous study (77), we found that some high-order transmodal brain regions within the limbic system showed 
more segments than other regions, including the VMPFC and TP.  

We then examined whether these larger numbers of segments (i.e., more frequent state transitions) in the limbic cortical and 
subcortical regions (the VMPFC, TP, hippocampus/amygdala) and in the visual cortices were due to recurrent activations of similar 
semantic representations over time using the ratio of intra- to inter-segment pattern similarity (fig. S12). The results suggest that the 
large number of segments within the visual cortical regions could be due to the recurrent activations of similar representations. This 
was not the case for the limbic regions, which showed a low intra-to-inter segment pattern similarity ratio. Lastly, there is also a 
possibility that these results are simply due to the low signal-to-noise ratio of these limbic regions, and our supplementary analysis 
results (fig. S13) suggest that it may not be the case in our study—the correlation between the ranks of the optimal k and tSNR was not 
significant (Spearman's ρ = -0.207, P = 0.3092).  

Interestingly, the VMPFC and TP were not even included in the analysis in the previous study (77) because of these regions’ low 
inter-subject synchrony, which has been also reported in other studies (44,78). Together, these findings may suggest these regions’ 
fundamental roles in endogenous cognitive and affective processes, such as storing and retrieving autobiographical memories of 
personal experiences and spontaneous thought. Therefore, these regions are likely to serve as a major source of the idiosyncrasy across 
individuals, which will be crucial for advancing personalized neuroscience and personalized treatment for psychiatric disorders. 



 

Fig. S12. Intra- versus inter-segment pattern similarity of 26 ROIs. 

To examine whether a large number of segments (i.e., more frequent state transitions) in some 
brain regions was due to the recurrent activations of similar semantic representations, we 
calculated the ratio of intra- to inter-segment pattern similarity. The plot shows the average ratio 
of intra- vs. inter-segment pattern similarity across participants for the 26 ROIs. The error bars 
represent the standard error of the mean (s.e.m.).  
Main findings: Among the top 5 regions with the largest number of segments, the LOC and the 
early visual cortex showed a high intra-to-inter segment pattern similarity ratio, whereas the 
VMPFC, TP, and the hippocampus/amygdala showed a low intra- to inter-segment pattern 
similarity ratio. This suggests that the large number of segments within the visual cortical areas 
could be due to the recurrent activations of similar representations, but this was not the case in 
limbic regions.  
Methods: Based on the segmentation results with the optimal k of each region, we calculated the 
intra-segment pattern similarity using the trials within each segment. We also calculated the 
inter-segment pattern similarity only considering the trials within the adjacent segments. Then, 
we divided the intra-state pattern similarity by the inter-state pattern similarity across ROIs and 
runs and averaged them across four runs for each participant.  

Fig S12. intra-state versus. inter-state pattern similarity
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Fig. S13. The relationship between the temporal Signal-to-Noise Ratio (tSNR) and the 
relative frequency of state transition. 

We examined whether the results of the relative frequency of state transition were confounded 
with the levels of signal-to-noise ratio of the BOLD signal. (A) We calculated the temporal 
signal-to-noise ratio (tSNR) using the TR images of the concept reflection runs and then 
averaged the tSNR values across runs and participants (n = 61). The map shows the group-
average of the tSNR. (B) We calculated the Spearman’s correlation between the ranks of two 
variables—the optimal number (k) of segments and the tSNR. The correlation between the two 
ranks was not significant (Spearman's ρ = -0.207, P = 0.3092). For the full region names, please 
see fig. S7. 

Fig S13. tSNR map
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Fig S14.

B Paired t-test results
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Fig. S14. Representational connectivity analysis for the modulatory effects of self-relevance on representational similarity 

among ROIs. 

(A) Analysis overview. To identify which brain regions showed the representational changes modulated by the level of self-relevance,
we first divided the trials into high vs. low self-relevance groups. Then we calculated representational dissimilarity matrices (RDMs)
among high self-relevance or low self-relevance trials for each ROI using one minus correlations. With these RDMs, we calculated the

representational connectivity among ROIs using Kendall’s	"A, resulting in two representational connectivity matrices per participant—
one for the high self-relevance condition and the other for the low self-relevance condition. Given that we used 26 ROIs, the size of

each representational connectivity matrix was 26	×	26. Using these representational connectivity matrices, we conducted the paired t-
tests between the high vs. low self-relevance conditions. With the difference matrices, we calculated the region-level averages and
conducted bootstrap tests (with 10,000 iterations) to identify the ROIs that showed the significant changes in the representational
connectivity with other regions by the level of self-relevance. (B) The matrix shows the paired t-test results with the group average of
the difference representational connectivity matrices. The ROI pairs with warm (vs. cold) colors indicate that they showed higher (vs.

lower) levels of representational connectivity during high self-relevance than low self-relevance trials. *P < 0.05, **P < 0.01,
uncorrected, two-tailed, bootstrap tests. (C) The bottom plot shows the region-level averages of representational connectivity for the
high vs. low self-relevance conditions. A dot represents each region, and the y-axis represents the mean difference in representational
connectivity for the high vs. low self-relevance comparisons. The error bars represent the standard error of the mean (s.e.m.) across
individuals. The asterisk indicates the result of bootstrap tests for the paired comparisons, two-tailed.

Main findings: The left TPJ, HC/AMY, and bilateral LOC showed significant changes in the representational connectivity with other 
regions modulated by self-relevance. The left TPJ and HC/AMY showed the overall increases in the representational connectivity with 
other regions; for the left TPJ, z = 2.385, P = 0.0171, for the HC/AMY, z = 2.178, P = 0.0294, whereas the bilateral LOC showed 
decreased representational connectivity with other regions, z = -2.446, P = 0.0144 (for the results of all the ROIs, see table S6). Note 

that all these regions were a part of the meaning-related cluster. 

We then identified the brain regions that showed significant modulations in representational connectivity with these three ROIs. The 
TPJ and HC/AMY showed decreased representational connectivity with the sensorimotor and salience network brain regions for 
highly self-relevant trials, including the S1/M1, visual cortex, dACC, and aINS. For the bilateral LOC region, we observed increased 
representational connectivity with some basal ganglia regions, including putamen and caudate head, S1/M1, and middle temporal 
sulcus, during highly self-relevant trials. Overall, these results suggest that the left TPJ and HC/AMY regions played a role as the hub 
attractor regions for the high self-relevance trials. 
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Fig. S15. Further analysis of the time-mean variable 

(A) Structural coefficient analysis. To further investigate the characteristics of the time-mean variable in our Markov chain-based
predictive model, we first conducted a structural coefficient analysis (79). In the analysis, we correlated the time-mean variable with

the predicted negative affectivity ($%, model prediction; top row) and the actual negative affectivity ($; bottom row). The results
showed that the time-mean variable was not significantly correlated with the predicted negative affectivity nor with the actual negative
affectivity across all four datasets from the FAST-fMRI study and the FAST-web study. (B) Histograms of the time-mean variable.
The distribution of the time-mean variable showed that the group averages of the time-mean variable were negative (i.e., past-
oriented) across all four datasets, mean ± SD for the first session of the FAST-fMRI study = -0.145 ± 0.141 with [min, max] = [-0.620,
0.166], for the second session of FAST-fMRI study, -0.080 ± 0.153, [-0.691, 0.214], for the first session of the FAST-web study, -
0.057 ± 0.114, [-0.428, 0.213], and for the second session of the FAST-web study, -0.050 ± 0.102, [-0.384, 0.138].
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Fig. S16. Multiple differences between low versus high self-relevance trial bins. 

To characterize the low and high self-relevance trial bins, we compared multiple variables between the low vs. high self-relevance 
trial bins. In the violin plots in (A), (B) left, (C), and (D), dots represent individuals. In the violin plot in (B) right, dots represent 
iterations. In the violin plot in (E), dots represent concepts.  

(A) Mean and variance of valence scores for low vs. high self-relevance trial bins. The high self-relevance trial bin had a significantly
higher mean valence compared to the low self-relevance trials, t60 = 10.297, P < 0.0001. In addition, the high self-relevance trials
showed a significantly higher variance in valence, t60 = 6.871, P < 0.0001.

(B) (Left) The number of high self-relevance trials was significantly higher than that of low self-relevance trials, t60 = 3.237, P =
0.0020. (Right) To test whether these different numbers of trials influenced the patterns of prediction performances, we re-trained the
valence models with the matched number of trials. For this, we randomly selected the trials for the group that had a larger number of
trials between the low vs. high self-relevance trial bins. For example, if the number of one participant’s high self-relevance trials was
100, and that of low self-relevance was 60, then we randomly selected 60 trials among the high self-relevance trials to match the
number of trials between the two bins. We repeated this random selection procedure 100 times. The results showed that the prediction
performances of the valence models with the matched number of trials were similar to the original results—i.e., the valence-lowself
model showed a better and more significant prediction performance compared to the valence-highself model, for the valence-lowself
model, mean prediction-outcome correlation r = 0.349 (originally, r = 0.307), for the valence-highself model, mean r = 0.131
(originally, r = 0.031). These results suggest that the lower prediction performance of the valence-highself model in comparison to the
valence-lowself model was not driven by the different number of trials.

(C) The high self-relevance trials showed a significantly higher level of vividness than the low self-relevance trials, t60 = 16.202, P <
0.0001.

(D) To compare the semantic distances among the concepts (i.e., trials) within the high vs. low self-relevance bins, we implemented a
word embedding model that transforms a word text into a single vector of multidimensional semantic space. We used the Korean
Wikipedia corpus and built a Korean Word2Vec model with 90 dimensions. The results showed that the Word2Vec mean distance
among the concepts within the high self-relevance bin was significantly shorter than the low self-relevance bin, t60 = 2.184, P =
0.0329, suggesting that the concepts within the high self-relevance bin were semantically closer to each other (i.e., high semantic
density) compared to the low self-relevance bin. The findings of (C) and (D) could be due to the episodic memory component in the
highly self-relevant concepts; episodic memory is known to have a high level of specificity, details, and concreteness (e.g., compared
to semantic memory), which can lead to high semantic neighborhood density (80).

(E) To examine the relative frequency of each word in the high vs. low self-relevance trial bins across individuals, we first obtained
the unique concepts that at least appeared either in the high or low self-relevance bins across more than two individuals. Then, we



 

counted and compared how many participants reported each concept for the high vs. low self-relevance bins. In more detail, there 
were 3,413 unique concepts in total (from 61 participants in the fMRI study), and 434 concepts appeared across at least 2+ individuals, 
either in the high or low self-relevance bins. For these 434 concepts, we compared the number of participants between the high vs. low 
self-relevance bins. The results showed that the high self-relevance bin showed a greater level of consistency across individuals than 
the low self-relevance bin, t433 = -6.738, P < 0.0001.  

*P < 0.05, **P < 0.01, ****P < 0.0001, two-tailed, paired t-test.

Main findings: Overall, we observed a number of differences between the high vs. low self-relevance trial bins, including the 
distribution of valence and vividness scores, semantic distances, and the consistency of the reported concepts across individuals. 
However, it is unclear whether the observed differences are causes of our main findings, or whether all these observed differences 
(including our main findings) are the characteristics of self-relevant spontaneous thought. Therefore, we believe that this line of 
inquiry is rather fundamental and necessitates further, careful investigations that should be the focus of future studies.  



 

Table S1. Stability of the features across different sets of seed words and test time points (7-week interval) 

Dynamic features 
Valence Safety-threat Time Self-relevance Vividness 

r P r P r P r P r P 

Mean 0.543  ** 0.0019 0.772  *** 0.0000 0.626  *** 0.0002 0.609  *** 0.0004 0.677  *** 0.0000 
Variance 0.721  *** 0.0000 0.754  *** 0.0000 0.367  * 0.0462 0.693  *** 0.0000 0.621  *** 0.0002 

Transition prob. 
Lv.1 → Lv.1 0.408  * 0.0254 0.271  0.1467 0.447  * 0.0133 0.671  *** 0.0000 0.596  *** 0.0005 
Lv.2 → Lv.1 0.456  * 0.0113 0.741  *** 0.0000 0.807  *** 0.0000 0.440  * 0.0149 0.522  ** 0.0031 
Lv.3 → Lv.1 0.589  *** 0.0006 0.197  0.2967 -0.075 0.6947 - - - - 
Lv.1 → Lv.2 0.567  ** 0.0011 0.110  0.5621 0.314 0.0915 0.671  *** 0.0000 0.596  *** 0.0005 
Lv.2 → Lv.2 0.579  *** 0.0008 0.815  *** 0.0000 0.810  *** 0.0000 0.440  * 0.0149 0.522  ** 0.0031 
Lv.3 → Lv.2 0.489  ** 0.0061 0.498  ** 0.0051 -0.263 0.1607 - - - - 
Lv.1 → Lv.3 0.505  ** 0.0044 0.164  0.3871 0.466  ** 0.0095 - - - - 
Lv.2 → Lv.3 0.438  * 0.0154 0.747  *** 0.0000 0.755  *** 0.0000 - - - - 
Lv.3 → Lv.3 0.554  ** 0.0015 0.661  *** 0.0001 0.023  0.9020 - - - - 

Steady state prob. 
Lv.1 0.690  *** 0.0000 0.682  *** 0.0000 0.812  *** 0.0000 0.565  ** 0.0011 0.591  *** 0.0006 
Lv. 2 0.673  *** 0.0000 0.757  *** 0.0000 0.788  *** 0.0000 0.565  ** 0.0011 0.591  *** 0.0006 
Lv. 3 0.566  ** 0.0011 0.791  *** 0.0000 0.467  ** 0.0092 - - - - 

Note. We examined the stability and test-retest reliability of the Markov chain-based dynamic features across different sets of seed 
words and across two different time points (7-week interval on average) with a subset of participants (n = 30). For the details of how 
we defined the states and calculated the transition and steady-state probabilities, please refer to Methods. Note that since the self-
relevance and vividness dimensions had only two discrete states, their correlation values had the same values (e.g., for Lv.1 → Lv.1 
and Lv.1 → Lv.2; because one probability is one minus the other probability). One-sample t-test for correlations was performed. Lv.1 
represents negative, threat, past, low, and low for valence, safety-threat, time, self-relevance, and vividness, respectively. Lv.2 
represents neutral, neutral, present, high, and high for valence, safety-threat, time, self-relevance, and vividness, respectively. Lv. 3 



 

represents positive, safety, and future for valence, safety-threat, and time, respectively. *P < 0.05, **P < 0.01, ***P < 0.001, t-test for 
Pearson’s correlation, two-tailed. 



 

Table S2. Test-retest reliability and factor loadings of self-report questionnaires 

Questionnaires Subscale 
(if subscales were used) 

FAST-fMRI (n = 30) FAST-fMRI (n = 62) FAST-web (n = 117) 

Test-retest reliability Factor 1 Factor 2 Factor 1 Factor 2 

r P Negative 
affect 

Positive 
affect 

Negative 
affect 

Positive 
affect 

PANAS Positive affect 0.278   0.1371 0.081 0.939 0.261 0.751 
PANAS Negative affect 0.545  ** 0.0018 0.736 0.264 1.127 0.496 
CES-D - 0.655  *** 0.0001 0.667 -0.329 0.775 -0.108

MASQ30 General distress 0.714  *** 0.0000 0.870 -0.073 - - 
MASQ30 Anhedonic depressiona 0.415  * 0.0227 -0.094 0.809 - - 
MASQ30 Anxiety arousal 0.723  *** 0.0000 0.571 0.323 - - 
STAI-T - 0.850  *** 0.0000 0.794 -0.249 0.663 -0.304

RRS Brooding 0.563  ** 0.0012 0.747 0.060 - - 
RRS Depressive rumination 0.562  ** 0.0012 0.814 0.070 0.547 -0.110

SIQ Two representative 
items (12, 22) - - - - 0.144 -0.403

LS - - - - - 0.306 -0.511
PWB Environmental mastery - - - - -0.192 0.436
PWB Autonomy - - - - 0.081 0.486
PWB Positive relations - - - - -0.206 0.574
PWB Purpose in life - - - - 0.173 0.605
PWB Personal growth - - - - 0.102 0.649
PWB Self-acceptance - - - - -0.192 0.675
SWLS - - - - - -0.138 0.545

Note. Through the FAST-fMRI study, we examined the test-retest reliability of the self-report questionnaires with a 7-week interval 
using Pearson’s correlations. All the questionnaires except for the PANAS-positive affect subscale showed medium to high levels of 
test-retest reliability, suggesting that these questionnaires provide trait measures. To obtain a general negative affectivity score that 



 

can be used as an outcome variable in predictive modeling, we conducted factor analyses for a two-factor model. The factor analyses 
were done separately for the FAST-fMRI and FAST-web studies because these two studies conducted different sets of self-report 
questionnaires (e.g., we included more questionnaires related to positive affectivity in the FAST-web study). The values in bold 
indicate the higher factor loadings between two factors to show which factor the questionnaire belongs to. PANAS, Positive and 
Negative Affect Schedule; CES-D, Center for Epidemiologic Studies Depression; MASQ30, 30-item Mood and Anxiety Symptom 
Questionnaire; STAI-T, State-Trait Anxiety Inventory-Trait version; RRS, Rumination Response Scale; SIQ, Suicidal Ideation 
Questionnaire; LS, Loneliness Scale; PWB, Psychological Well-Being Scale; SWLS, Satisfaction With Life Scale. *P < 0.05, **P < 
0.01, ***P < 0.001, t-test for Pearson’s correlation, two-tailed. a reverse coding. 



 

Table S3. Descriptive statistics of self-report questionnaires 

Questionnaire Subscale 
(if subscales were used) 

Test Re-test 
Possible 

range Mean SD Min Max Mean SD Min Max 

fMRI study 
PANAS Positive affect 22.177 6.880 9 36 22.767 5.894 11 36 9-45
PANAS Negative affect 18.774 6.258 11 34 20.733 6.198 12 35 11-55
CES-D - 12.661  8.686 0 43 14.933 11.095 2 36 0-60

MASQ30 General distress 19.661 7.767 10 38 21.767 9.261 10 41 10-50
MASQ30 Anhedonic depression 26.806 9.179 11 49 26.333 8.409 12 42 10-50
MASQ30 Anxiety arousal 14.290 5.391 10 33 16.800 7.481 10 40 10-50
STAI-T - 21.355  10.217 5 49 24.533 11.048 10 51 0-60

RRS Brooding 13.484 5.315 7 26 15.467 5.692 7 25 7-28
RRS Depressive rumination 17.177 5.801 9 34 19.900 6.820 9 33 9-36

Web study 
PANAS Positive affect 23.342 7.350 10 38 22.755 6.336 10 35 9-45
PANAS Negative affect 19.393 7.375 11 47 19.367 8.416 11 47 11-55
CES-D - 11.897  7.429 0 35 11.816 8.348 1 35 0-60
STAI-T - 41.684  10.397 25 65 42.367 11.178 26 63 20-80

RRS Depressive rumination 15.880 5.138 9 31 16.735 5.696 9 31 9-36

SIQ Two representative 
items (12, 22) 1.009 1.941 0 11 1.082 1.956 0 9 0-12

LS - 2.752 2.308 0 9 2.878 2.627 0 9 0-9
PWB Environmental mastery 10.692 2.091 5 14 10.714 2.021 6 14 3-18
PWB Autonomy 9.889 2.522 4 15 9.245 2.411 4 15 3-18
PWB Positive relations 11.214 2.579 4 15 10.673 2.954 4 15 3-18
PWB Purpose in life 12.316 2.250 6 15 12.327 2.212 7 15 3-18
PWB Personal growth 12.812 1.903 7 15 12.755 1.820 9 15 3-18



 

PWB Self-acceptance 10.821 2.351 3 15 10.633 2.464 3 15 3-18
SWLS - 20.530  5.854 5 34 19.531 6.059 5 32 5-35

Note. Descriptive statistics of self-report questionnaires of the FAST-fMRI study and FAST-web study. The FAST-fMRI study and 
FAST-web study measured individual differences in personality and affectivity by using different sets of self-reported questionnaires. 
We conducted the factor analysis respectively for each study to calculate the general negative affectivity scores. Re-test data indicate 
the second sessions of the two studies. PANAS, Positive and Negative Affect Schedule; CES-D, Center for Epidemiologic Studies 
Depression; MASQ30, 30-item Mood and Anxiety Symptom Questionnaire; STAI-T, State-Trait Anxiety Inventory-Trait version; 
RRS, Rumination Response Scale; SIQ, Suicidal Ideation Questionnaire; LS, Loneliness Scale; PWB, Psychological Well-Being 
Scale; SWLS, Satisfaction With Life Scale.  



 

Table S4. Correlation between general negative affectivity and Markov-chain dynamic features 

Dynamic features 
Valence Safety-threat Time Self-relevance Vividness 

r P r P r P r P r P 

Mean -0.432  *** 0.0004 -0.265  * 0.0374 0.137 0.2880 0.348  ** 0.0056 0.270  * 0.0338 

Variance 0.343  ** 0.0063 0.337  ** 0.0074 0.159 0.2175 0.005  0.9702 0.140  0.2773 

Transition prob. 

Lv.1 → Lv.1 0.294  * 0.0203 0.202  0.1149 0.005 0.9682 -0.213 0.0962 -0.133 0.3042 

Lv.2 → Lv.1 0.360  ** 0.0041 0.399  ** 0.0013 0.004 0.9767 -0.258  * 0.0425 -0.133 0.3030 

Lv.3 → Lv.1 0.416  *** 0.0008 0.344  ** 0.0062 -0.124 0.3381

Lv.1 → Lv.2 -0.173 0.1796 -0.119 0.3561 -0.009 0.9432 0.213  0.0962 0.133  0.3042 

Lv.2 → Lv.2 -0.045 0.7302 -0.200 0.1191 -0.057 0.6603 0.258  * 0.0425 0.133  0.3030 

Lv.3 → Lv.2 -0.207 0.1060 -0.156 0.2268 -0.005 0.9697

Lv.1 → Lv.3 -0.221 0.0843 -0.109 0.4008 0.011 0.9312 

Lv.2 → Lv.3 -0.229 0.0739 -0.030 0.8189 0.114 0.3792 

Lv.3 → Lv.3 -0.180 0.1607 -0.068 0.5975 0.137 0.2892 

Steady state prob. 

Lv. 1 0.484  *** 0.0001 0.415  *** 0.0008 -0.027 0.8332 -0.278  * 0.0288 -0.186 0.1486 

Lv. 2 -0.193 0.1327 -0.249 0.0511 -0.028 0.8293 0.278  * 0.0288 0.186  0.1486 

Lv. 3 -0.232 0.0702 -0.001 0.9932 0.107 0.4058 

Note. Correlation values between the general negative affectivity scores from the factor analysis and the dynamic features from the 
Markov chain analysis (n = 62). Note that since the self-relevance and vividness dimensions had only two discrete states, some 
correlation values are the same (e.g., for Lv.1 → Lv.1 and Lv.1 → Lv.2; because one probability is one minus the other probability). 
One-sample t-test for correlations was performed. Lv.1 represents negative, threat, past, low, and low for valence, safety-threat, time, 
self-relevance, and vividness, respectively. Lv.2 represents neutral, neutral, present, high, and high for valence, safety-threat, time, 



 

self-relevance, and vividness, respectively. Lv. 3 represents positive, safety, and future for valence, safety-threat, and time, 
respectively. *P < 0.05, **P < 0.01, ***P < 0.001, t-test for Pearson’s correlation, two-tailed. 



 

Table S5. Hierarchical regression analysis to compare the contributions of non-Markov chain features versus Markov chain 
features 

Adjust R-squared R-squared

A. Reduced model (features: mean and variance) 0.111 0.213 

B. Full model (features: mean, variance, and Markov chain features 0.404 0.521 

A-B 0.293 0.308 

Note. We calculated the contributions of non-Markov chain features vs. Markov chain features of our predictive model using a 
hierarchical regression approach. We conducted this analysis in the training dataset with the final model (i.e., without further fitting). 
We did not use the cross-validation approach in this analysis because the goal of this analysis is not for a generalization but for an 
understanding of the model. The non-Markov chain features, including mean and variance, explained 21.3% of the total variance of y, 
while the full model explained 52.1% of the total variance. Thus, the additional variance explained by the Markov-chain features was 
30.8%. When we used the adjusted R-squared, the additional variance explained by the Markov-chain features was 29.3%, suggesting 
that the Markov chain features (i.e., transition dynamics) play an important role in predicting negative affectivity.



 

Table S6. Optimal number of state segments and representational connectivity for the 26 
regions-of-interest (ROIs) 

ROIs 

Relative frequency of 
state transition 

Representational connectivity 
(Kendall's τA) 

Average 
z-score

z 
(boot) 

P 
(boot) 

region-level      
averages 

bootstrap test 
results 

high self-
relevance 

low self-
relevance z P 

Stimulus-driven cluster 
Visual early(B) 0.065 2.808  ** 0.0050 0.078 0.079 -0.298 0.7657 
dACC 0.044 0.719  0.4719 0.068 0.065 0.956 0.3391 
MFG(B) 0.051 1.568  0.1168 0.107 0.102 1.959 0.0501 
MTS(R) 0.028 0.576  0.5643 0.092 0.090 0.712 0.4763 
STS(R) 0.007 0.171  0.8640 0.101 0.100 0.631 0.5279 
aINS(B) 0.044 1.251  0.2109 0.111 0.107 1.355 0.1755 
Caudate head(R) 0.017 0.229  0.8188 0.043 0.043 -0.070 0.9441 
PAG 0.028 0.636  0.5250 0.058 0.054 1.839 0.0660 
Thalamus -0.069 -1.762 0.0780 0.058 0.057 0.501 0.6164 

Meaning-related cluster 
VMPFC 0.166 4.239  *** 0.0000 0.101 0.101 0.161  0.8717 
DMPFC -0.015 -0.452 0.6514 0.131 0.129 0.628  0.5298 
DLPFC(L) -0.179 -4.795  *** 0.0000 0.104 0.102 0.918  0.3586 
TPJ(L) -0.088 -1.965  * 0.0495 0.121 0.115 2.385  * 0.0171 
PCC -0.128 -2.221  * 0.0264 0.085 0.082 1.168  0.2426 
IFG(B) 0.042 1.334 0.1821 0.120 0.118 0.781  0.4349 
LOC 0.140 3.906  ** 0.0001 0.051 0.057 -2.446  * 0.0144 
TP(B) 0.148 2.846  ** 0.0044 0.077 0.073 1.510 0.1310 
Caudate Body(B) -0.048 -1.238 0.2159 0.065 0.062 1.589 0.1121 
Putamen mid(B) -0.006 -0.226 0.8215 0.071 0.075 -1.668 0.0953 
HC/AMY 0.064 2.465  * 0.0137 0.101 0.095 2.178  * 0.0294 

Sensorimotor cluster 
AMPFC -0.007 -0.101 0.9192 0.090 0.090 -0.043 0.9658 
Sensorimotor(B) -0.133 -6.389  *** 0.0000 0.100 0.099 0.501 0.6161 
S2(B) -0.047 -1.379 0.1679 0.088 0.087 0.281 0.7791 
dpINS(B) 0.030 1.225 0.2207 0.098 0.098 0.086 0.9314 
ITG(B) 0.058 1.572 0.1159 0.096 0.093 1.212 0.2255 
Putamen posterior(B) -0.030 -0.718 0.4725 0.063 0.064 -0.508 0.6115 

Note. ROI-level analyses of the Hidden Markov Model (HMM) and representational 
connectivity. For details of these analyses, please refer to Methods (HMM) and fig. S14 
(representational connectivity analysis). *P < 0.05, **P < 0.01, ***P < 0.001, bootstrap tests with 
10,000 iteration, two-tailed. 



 

Table S7. Correlations with verbal fluency 

Variables r P 
Valence Safety-threat Time Self-relevance Vividness 

r P r P r P r P r P 

Model prediction 
(predicted negative 

affectivity) 
-0.135 0.2942 

# of unique words 0.299  * 0.0183 
Mean -0.060  0.6439 -0.151  0.2399 -0.082  0.5268 -0.178 0.1652 -0.144  0.2658

Variance -0.081  0.5308 -0.104  0.4204 -0.002  0.9895 0.176 0.1716 0.202 0.1147 
Transition prob. 

Lv.1 → Lv.1 0.123 0.3420 0.066 0.6108 0.053 0.6827 0.083 0.5225 0.039 0.7649 
Lv.2 → Lv.1 -0.077  0.5538 -0.016  0.9015 -0.031  0.8109 0.306  * 0.0154 0.177 0.1684 
Lv.3 → Lv.1 -0.038  0.7722 -0.012  0.9274 0.008 0.9495 
Lv.1 → Lv.2 -0.090  0.4863 0.019 0.8823 0.023 0.8615 -0.083 0.5225 -0.039  0.7649
Lv.2 → Lv.2 0.058 0.6567 0.064 0.6188 0.021 0.8717 -0.306  * 0.0154 -0.177  0.1684
Lv.3 → Lv.2 0.197 0.1249 0.169 0.1891 0.109 0.3986 
Lv.1 → Lv.3 -0.061  0.6354 -0.142  0.2714 -0.233  0.0681
Lv.2 → Lv.3 -0.016  0.8991 -0.084  0.5184 0.011 0.9352 
Lv.3 → Lv.3 -0.141  0.2730 -0.159  0.2171 -0.132  0.3075

Steady state prob. 
Lv. 1 0.014 0.9166 0.033 0.7964 0.001 0.9913 0.209  0.1033 0.146 0.2565 
Lv. 2 0.086 0.5072 0.110 0.3941 0.054 0.6767 -0.209 0.1033 -0.146  0.2565
Lv. 3 -0.110  0.3950 -0.167  0.1938 -0.111  0.3892

Note. We assessed participants’ verbal fluency prior to the fMRI experiment to examine whether the individual differences in verbal 
fluency were related to their FAST performance and results. For the verbal fluency test, we asked participants to produce as many 
words as possible that start with a given letter of the Korean alphabet within a one minute window. We tested with three Korean 
alphabet letters:ㄱ,ㅇ, andㅅ. We also asked participants to produce as many animals as possible within one minute, regardless of the 
letter the word begins with. We used the total number of words the participants produced as a verbal fluency score. The verbal fluency 



 

score did not show significant correlations with most of the variables except for two variables: 1) the number of unique words in the 
FAST response and 2) the transition probability of Lv.2 →	Lv.1 (or Lv.2) on the self-relevance dimension (P = 0.0183 and 0.0154, 
respectively; non-significant after the correction for multiple comparisons). *P < 0.05, t-test for Pearson’s correlation, two-tailed. 
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