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Embodying the default mode network: self-related
processing from an embodied perspective "
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Self-related processes in the default mode network (DMN) have
been viewed predominantly through a cognitive lens, often
overlooking the embodied dimensions of self. This paper
proposes an embodied reconceptualization of DMN function by
revisiting its two key self-related processes: self-relevance and
self-reference. We argue that self-relevance is rooted in
interoceptive inference and value estimation, assessing stimuli
based on their predicted long-term impacts on internal bodily
states. We introduce the notion of ‘affective maps’ — internal
models of internal bodily state that parallel cognitive maps,
which are internal models of the external world. We further
reinterpret self-reference through the lens of second-order
cybernetics, framing the DMN as a core component of a
reflexive, nontrivial brain-body system, which monitors and
regulates the internal milieu through bidirectional brain-body
loops. This systems-level view integrates insights from
interoception, affective neuroscience, and cybernetics,
positioning the DMN as an embodied internal model crucial for
constructing and regulating selfhood.
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Introduction

The default mode network (DMN) comprises a group of
brain regions, including ventromedial and dorsomedial
prefrontal cortices, posterior cingulate cortex (PCC),
medial temporal lobe, and superior temporal cortices [1].
Studies have shown that regions of the DMN are in-
volved in self-related processes, such as autobiographical
memory [2], reflection on one’s personality traits [3], and
the processing of self-relevant information [4-6]. In
studies of the DMN functions in self-related processing,
most research has focused on the conceptual and psy-
chological aspects of the self. However, it is important to
acknowledge that the self also encompasses significant
bodily dimensions, such as the physical self — one of the
two primary dimensions of the self, alongside the psy-
chological self [7].

Revisiting the bodily dimensions of the self

Throughout the long history of the studies of the self,
the importance of the body has been emphasized across
multiple fields. In biology, Jakob von Uexkiill in-
troduced the concept of Umwelt, meaning environment
in German, to denote the unique surroundings each or-
ganism experiences through the sensory and motor sys-
tems embedded in its body plan [8]. Although the term
Umwelt was later adapted to describe the subjective
representation of the world [9], Uexkiill originally placed
the body at the center of each organism’s construction of
its unique perceptual world. In psychology, William
James also described the body as an essential part of the
self, referring to it as the ‘material self” [10]. Subse-
quently, several theorists consistently emphasized the
importance of the body in their theories of the self. For
instance, Ulric Neisser emphasized the body as the
primary locus of perception and action, referring to it as
the ‘ecological self” — the perceived self directly from
the ‘continuous flow of optical information’ [11]. Also,
Shaun Gallagher described the ‘minimal self’ [12] as the
most basic sense of being a self, including body owner-
ship (e.g. feeling that one’s body is one’s own) and body
agency (e.g. one is in control of one’s body). Antonio
Damasio emphasized the body as a foundation of con-
sciousness through his conception of the ‘proto-self,’
referring to the continuous mapping of bodily signals
[13]. Despite varied terminology, there is a general
agreement that the body plays a crucial role in forming
selfhood, the subjective experience of being a self [14].
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2 Functions of the default mode network
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Limited emphasis on the bodily dimension in DMN and self-related research. To assess the extent to which research on the DMN incorporates the
bodily dimension of self, we conducted a literature search on PubMed (2006-April 2025) using selected keywords. The left panel shows the number
and proportion of papers containing specific keywords “DMN” or “default mode network” (gray + green + orange), “self” (green + orange), and body-
related terms (orange) over time. Body-related search terms include embody, embodiment, embodied, bodily, body, interoception, and interoceptive.
The right panel summarizes these proportions across the entire period. Of 13,958 DMN-related papers, approximately 11.5% (1,607) also included the

term “self”, while only 1.23% (172) additionally included body-related terms.

Beyond theoretical work, empirical studies also highlight
the body as a key component of the self, resonating with
the concept of the ‘embodied self’ [15] or ‘bodily self-
consciousness’ [16]. Several behavioral tasks have been
developed to target the bodily self. For example, the
Rubber Hand Illusion demonstrates that congruent vi-
sual and tactile inputs can induce ownership over an
artificial limb [17], while the Full Body Illusion shows
that visual feedback of internal rhythms, such as re-
spiration or heartbeat, can modulate perceived self-lo-
cation [18]. These tasks have enabled the empirical
investigation of the bodily dimensions of the self. In
neuroscience, however, even though the DMN has been
widely recognized as a core network for self-related
processing, the contribution of the bodily self to DMN
function has been relatively understudied. A PubMed
search (see Figure 1 for details) indicates that the bodily
dimension of self-related DMN activity remains under-
represented in the literature.

In this paper, by focusing on two representative self-
related functions in the DMN — self-relevance and self-
referential processing [19] — we aim to reconceptualize
these processes through the lens of embodiment. Self-
relevance processing refers to the evaluation of the
personal significance or proximity of a stimulus or event
to the self, whereas self-referential processing involves
metacognitive operations, such as introspection and self-
assessment. Although these functions have pre-
dominantly been examined from the standpoint of the
conceptual self, we undertake a theoretical re-

examination of the literature and propose new directions
that integrate bodily processes into the understanding of
these DMN-related functions.

Embodying self-relevance: an interoceptive
and value-based account

"T'raditionally, studies in cognitive neuroscience have in-
vestigated self-relevance primarily through conceptual or
social tasks, reporting DMN activation during self-re-
levance processing. These tasks include rating the per-
sonal relevance of emotional stimuli [20], comparing one’s
name or face to others (e.g. romantic partners, friends, or
strangers) [21,22], or associating cues with the self and
others [23,24]. Most of these studies have found that
processing or evaluating self-relevant information activates
brain regions within the DMN, especially the cortical
midline structures [19,21]. More recent work has extended
these findings by showing that the DMN is crucial for
predicting the perceived level of self-relevance during
narrative processing and spontaneous thought [5,6].

However, many of these studies also reported the in-
volvement of the salience network, including the anterior
cingulate cortex (ACC) and anterior insula (aINS)
[6,21,22], along with several subcortical regions such as
the ventral striatum [5,6,20,22]. Similarly, in a recent
large-scale connectome-based predictive modeling study,
Zhang et al. [25] showed that individual differences in
self-prioritization effects — the tendency to prioritize
self-related stimuli over those related to others [26] — can
be predicted from resting-state connectivity patterns
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spanning the DMN, salience network, and subcortical
regions, further supporting an integrative neural archi-
tecture of self-related processing. These suggest the
contribution of interoceptive and reward-related pro-
cesses to self-relevance evaluation [27-29], yet they have
received limited attention. We aim to provide a fresh
perspective on the collaborative contribution of the
DMN] salience network, and subcortical regions to self-
relevance processing by incorporating interoceptive in-
ference and reinforcement learning (RL).

We propose that self-relevance processing is grounded in
interoceptive predictions and their implications for the
internal state of the body [29,30], which can also be
conceptualized as the prediction of long-term rewards
(i.e. value) [31] (see Box 1 for definitions of key terms).
Interoception is the process of monitoring and signaling
internal physiological variables that constitute the in-
ternal bodily states — also referred to as the internal
milieu or internal environment [32]. Such internal state
variables constitute the viability zone that defines sur-
vival [33] — when they deviate significantly from the
homeostatic range, survival is compromised, whereas
maintaining these variables near the homeostatic set-
point supports well-being [34]. In this sense, the dis-
tance from the homeostatic set-point within the internal
state space can serve as a basis for a reward signal [35].
While rewards are often treated somewhat superficially
in the field of RLL — typically ignoring their relevance to
internal states — there have been efforts to investigate
them from a more fundamental and embodied perspec-
tive. For example, Singh et al. proposed that reward
originates from the internal environment of an agent,
emphasizing that “all rewards are internal” [36]. From
this perspective, the value of a stimulus or event
(i.e. expected future rewards) can also be re-
conceptualized as its predicted capacity to impact the
internal states [37], and estimating the interoceptive
consequences for the internal states becomes function-
ally analogous to value estimation in the RL context.

Self-relevance can then be understood as an absolute
(i.e. unsigned) value signal derived from simulated in-
ternal states. During the early stages of life, individuals
learn to associate external stimuli with their direct in-
teroceptive outcomes — for example, the positive con-
sequences of a caregiver’s presence [38] or the negative
consequences of loud noises [39]. Over development,
these associations give rise to internal models that pre-
dict how various stimuli influence internal states in re-
lation to homeostatic regulation, forming the foundation
of affect [40]. Based on the internal models, if a stimulus
or event is expected to impact internal homeostatic
conditions — whether positively or negatively — it is
likely to be perceived as self-relevant. Here, the internal
model is the model of the internal bodily state, con-
trasted with the internal model of the external world
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(i.e. world model), which has been extensively studied
in the conventional model-based RL [41]. We hy-
pothesize that the DMN plays an important role in re-
presenting the internal model of the internal
environment, supporting self-relevance processing.

This view differs from the predominant approaches to
self-relevance, which emphasize memory-based cogni-
tive processes, such as the recognition of names, faces, or
personal narratives. Instead, we propose that value-re-
lated processing lies at the core of the self-relevance
processing, emphasizing its pragmatic and affective as-
pects. This perspective helps explain why value [42] and
self-relevance processing converge in the DMN, parti-
cularly within the cortical midline structures such as the
ventromedial prefrontal cortex (vmPFC), and why these
processes often coactivate interoceptive and reward-re-
lated subcortical regions. This aligns with the Embodied
Predictive Interoceptive Coding (EPIC) model, which
posits that visceromotor regions, including the aINS,
ACC, and medial prefrontal and orbitofrontal cortices,
generate predictions about internal bodily states com-
pared with ascending interoceptive signals, forming a
basis for evaluating and predicting relevance in a given
context [30]. In addition, classical brain regions involved
in interoceptive and homeostatic processes — including
brainstem nuclei (e.g. nucleus tractus solitarius and
parabrachial nucleus) and hypothalamus [43,44] — are
known to interact with the DMN, particularly the
medial prefrontal cortex, playing a central role in auto-
nomic and homeostatic regulation [45]. Furthermore, a
large-scale ‘allostatic-interoceptive network’ has been
shown to link some subcortical structures with cortical
hubs overlapping the DMN and salience network [46].

These value-related and interoceptive processes may also
interact with memory-based cognitive processes [47], in-
cluding medial temporal and posterior medial regions
[48], which are also subcomponents of the DMN. These
cognitive systems may serve as contextual priors that
shape interoceptive predictions and value computations.
For example, recalling past bodily responses to certain
stimuli (e.g. food, music, etc.) can bias their predicted
interoceptive consequences and decisions [49,50]. Con-
versely, value-related and interoceptive signals may guide
the retrieval and updating of self-related memories [51],
suggesting bidirectional interactions between embodied
and cognitive self-processing. Therefore, understanding
DMN function in self-relevance processing requires an
integrative, systems-level perspective that bridges con-
ventional self-related brain networks with the inter-
oceptive and homeostatic architectures of the brainstem,
hypothalamus, and subcortical and cortical regions such as
striatum, amygdala, and insula.

Finally, we propose that self-relevance processing can be
understood through a concept of ‘affective maps,’
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4 Functions of the default mode network

Box 1 Key terminologies and their integration for an embodied view of self-relevance.

Concepts

Definition

Interoception
Internal bodily
state
Homeostasis

Set point

Reward

Value

The process of sensing, interpreting, and integrating internal physiological signals originating inside the body, such as heart
rate, blood pressure, glucose, and oxygen levels. It provides ongoing information about the internal bodily state at both
conscious and nonconscious levels, supporting the perception and regulation of the internal bodily state.

The state comprising internal physiological variables that reflect the body’s internal milieu. It can be conceptualized as an
internal state space, whose dimensions correspond to these variables, with a viability zone defining the range compatible with
survival. Outside this zone, the organism is unable to sustain life.

A self-regulating process by which the body maintains the stability of its internal states, keeping them within a viability zone
despite fluctuations in the external environment.

The target value or optimal range of internal physiological variables. Deviations from the set point trigger homeostatic regulatory
mechanisms that act to restore these variables toward the set point. Although useful for explaining homeostasis, the set point is a
latent, unobservable construct that is not static but dynamically adjusts in response to internal and external contexts.

In reinforcement learning, reward is a signal provided by the environment that guides an agent to maximize cumulative reward
over time. For living organisms, survival can be regarded as the primary reward, rooted in the homeostasis of the internal bodily
state. Within the homeostatic reinforcement learning framework, deviations from a homeostatic set point can serve as a basis
for generating a reward signal. In this sense, reward signals originate from the internal environment, suggesting that all rewards
are fundamentally internal and reflect an organism’s internal state.

In reinforcement learning, value refers to the expected cumulative reward an agent can obtain from a given state or action.
From our embodied perspective, value can be interpreted as the predicted long-term impact of a stimulus or action on the
organism’s internal state. It reflects how well an action is expected to restore or maintain internal stability, positioning value
estimation as a form of interoceptive forecasting.
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Integration of key concepts. This schematic illustrates how key concepts from reinforcement leaming (RL), homeostasis, and interoception are integrated within an
embodied framework of self-relevance. The agent interacts within both an extemal environment (e.g. a juice stand) and an internal environment (i.e. intemal bodily
state) that comprises intemal physiological variables such as hunger and thirst. Homeostasis is maintained by regulating the intemal state variables around a set
point within a viability zone that defines survival. Deviations from the set point generate reward signals, which guide decisions and actions aimed at reducing the
distance from the homeostatic set point. Through interoceptive inputs, the agent receives partial information about its intemal state and uses it to build an interal
model of the interal environment. Based on this model, the agent predicts interoceptive consequences of extemal stimuli or events by simulating its intemal states.
The prediction of interoceptive outcomes is analogous to value estimation in the RL context and serves as a basis for evaluating self-relevance..
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positioned in parallel with the well-established notion of
cognitive maps (Figure 2). In neuroscience, cognitive
maps refer to internal models that represent spatial re-
lationships and transition structures in the external en-
vironment [52]. In parallel, affective maps can be
defined as internal models that capture the transition
structures and dynamics within the internal environ-
ment. If we adopt an agent-as-a-state-space view [53],
the affective map can be understood as representing an

Embodying the default mode network Kim, Lee and Woo 5

state space, which can then be used to compute distance
from a homeostatic set-point. Recent studies have ex-
tended the role of cognitive maps beyond spatial do-
mains, suggesting that they support the organization of
abstract, generalizable knowledge structures across di-
verse domains of experience [54]; nevertheless, they
primarily support epistemic representations of the ex-
ternal world. In contrast, affective maps may support the
abstraction and generalization of pragmatic representa-

individual’s position and trajectory within the internal tions of the internal world.
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Affective maps as internal models of the internal environment. This figure illustrates the proposed concept of affective maps as internal models of the
internal environment, positioned in parallel with cognitive maps, which serve as internal models of the external environment. The cognitive maps (right,
orange) support the representation of spatial and contextual relationships and transition structures in the external world based on exteroceptive
inputs, primarily mediated by the hippocampus-DMN system. In contrast, affective maps (left, blue) model internal bodily states by representing
transition structures and dynamics within internal state space, mediated by the striatum-DMN system. For example, an individual may simulate the
Euclidean distance between their current and target locations (e.g. a juice stand) based on the cognitive map. In parallel, the individual may simulate
the interoceptive consequences of drinking orange juice, represented as a return (green dashed line) from a deviation (green solid line) to a
homeostatic set-point (smiley face) in internal state space. These predicted long-term interoceptive consequences render the orange juice self-
relevant (green dot). This internal state modeling involves interoceptive inference and engages a distributed network that includes the DMN, striatum,
hypothalamus, brainstem nuclei (e.g. nucleus tractus solitarius [NTS], parabrachial nucleus [PBN]), and the salience network (e.g. insula and anterior
cingulate cortex [ACC]). Two key features of self-referential processing are embedded in this system (pink dots): 1) reflexivity, reflecting the circular
structure of the brain—-body interactions, and 2) internal complexity, capturing the nontrivial, dynamically evolving nature of internal states. The
ouroboros-like diagram (bottom left) symbolizes the principle of reflexivity — a circular structure in which the brain and body co-regulate each other.
This cybernetic view highlights second-order self-referentiality, wherein the system includes itself in its own modeling and control. Together, these
components support a distributed, embodied self-model, positioning the DMN as a central node in constructing and regulating selfhood through
interoceptive and affective processes deeply grounded in embodiment. (Background image in this figure was generated using a generative Al tool.).
The ouroboros-like diagram (bottom left) is adapted from Foerster [64].
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6 Functions of the default mode network

"This ‘internal world” model — an internal model of the
internal environment — is likely to be encoded primarily
in the striatum and the DMN subregions such as the
vmPFC and PCC [55,56], along with the brain regions
related to internal bodily states. Particularly, the ventral
striatum — which consistently coactivates with the
vmPFC and PCC — may support reward computation
and valuation by representing and simulating the in-
ternal state space through the integration of inter-
oceptive signals and the prediction of their future
trajectories. In contrast, the dorsal striatum — func-
tionally connected with dorsomedial and lateral pre-
frontal cortices as well as motor-related regions — may
contribute more to estimating the interoceptive con-
sequences of actions by simulating transitions between
internal states [42,57-59]. This striatum-DMN system
may also interact with the hippocampus-DMN system to
give rise to value representations and support self-re-
levance assessment and value-based decision-making
[49,60]. This discussion can be extended to encompass
the concept of cognitive schemas [61,62], and to suggest
a corresponding concept of affective schemas, which
describe embodied, neurocognitive templates in-
tegrating interoceptive signals, value representations,
and affective maps into structured regularities that guide
prediction, regulation, and self-related processing.

Embodying self-reference: a cybernetic
account

Another well-known aspect of DMN function is its in-
volvement in self-referential processing, which can also
be viewed from the embodied perspective. Most tasks
targeting self-referential processing in cognitive neu-
roscience have emphasized its conceptual and cognitive
dimensions, such as self-description, self-trait judgment,
or autobiographical memory retrieval tasks [3,63]. Be-
cause such tasks focus on probing self-referential pro-
cessing by having participants reflect on their traits and
past experiences, self-referential processing in neu-
roscience typically refers to the subjective and phe-
nomenal aspects of self-reflective or introspective
thought. However, adopting a broader definition of self-
referential processing — for example, monitoring and
acting upon itself [64] — enables incorporating bodily
signals into the self-referential process. From this per-
spective, interoception can be conceptualized as ‘mon-
itoring’ the systems-level information of the internal
milieu, while autonomic regulation represents the
‘acting upon itself” component [65]. Notably, as men-
tioned above, DMN regions, particularly the medial
prefrontal cortex, also participate in visceromotor control
and autonomic regulation [43,45].

This embodied view of self-referential processing can
find historical resonance in the field of cybernetics, the
study of autonomous control and communications in

systems, particularly in second-order cybernetics [64].
While first-order cybernetics focused on negative feed-
back [66], second-order cybernetics extends this focus to
systems that observe, regulate, and modify themselves
— that is, self-referential systems. Negative feedback,
which stabilizes a variable by counteracting deviations,
represents a rudimentary form of self-regulation and is
found in both living and non-living systems. For ex-
ample, a thermostat maintains room temperature near a
set-point, and even simple anticipatory behaviors — like
a cat predicting a mouse’s path — can involve predictive
negative feedback loops [67]. However, these processes,
while adaptive, do not by themselves constitute self-
referential systems in the full sense. What makes self-
referential systems distinct is not merely their ability to
maintain stability, but their capacity to include them-
selves in the loop of regulation — to observe and modify
their own operations.

Self-referentiality in second-order cybernetics stresses
reflexivity (or circularity) where the observer is not se-
parate from the system it controls — it is embedded
within it. This circular structure, where the system in-
cludes a model of itself or influences itself through self-
regulation, is referred to as ‘reflexivity’ [64]. This is often
phrased as “the cybernetics of cybernetics” or “obser-
ving systems,” highlighting that the act of observation
becomes part of the system being controlled. In humans,
this means that the brain participates in regulating its
own body, creating inherently self-referential loops
(Figure 2). Second-order cybernetics also emphasizes
the ‘nontrivial’ nature of self-referential systems char-
acterized by internal complexity. One of the pioneers of
second-order cybernetics, Heinz von Foerster’s idea of
‘nontrivial machines’ [64] describes systems that have an
internal state that dynamically changes over time, so the
same input might yield different outputs at different
times. He suggested that living organisms are nontrivial
machines, incorporating feedback in such a way that the
system actively changes itself as it interacts with the
world. Throughout evolution, even prior to the emer-
gence of the brain, organisms exhibited a self-referential
nature, enabling systems to monitor and regulate
themselves in relation to their internal and external
environments, as corroborated by Jakob von Uexkiill’s
notion of “the supra-machine regulation as a specific
characteristic of life” [68].

Importantly, the DMN functions can be interpreted
through the lens of embodied self-referentiality —
namely, reflexivity and nontriviality — offering a pro-
mising direction for reconceptualizing its role beyond its
cognitive aspects. First, the principle of reflexivity is
deeply embedded in the DMN’s architecture and
functional roles. Rather than serving as a detached cog-
nitive monitor, the DMN can be viewed as an integral
component of the brain—body system, a tightly coupled
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whole in which the brain and body co-regulate each
other. DMN activity both reflects and shapes internal
physiological states by participating in the bidirectional
loops: sensing bodily signals such as interoceptive and
autonomic inputs, while also generating descending
regulatory outputs that influence bodily tone and
homeostasis [43,45]. This integrative role can be further
elaborated by considering the DMN’s relationship with
the central autonomic network (CAN) and other systems
involved in autonomic regulation [69-71]. In this sense,
the DMN does not merely represent the self but actively
participates in constructing and adjusting the body-in-
context — a dynamic integration of the bodily self and
environmental demands.

Second, the nontrivial and dynamic nature of the DMN
aligns with its proposed role as an embodied internal
model. Its function is not fixed or purely reactive; rather,
it encodes prior state history, predictions, and self-re-
levant contexts that continuously evolve [72,73]. Just as
von Foerster’s nontrivial machine produces different
outputs for the same inputs depending on its history, the
DMN provides a dynamic internal context that guides
interpretation, affective tone, and regulatory responses
[74]. Crucially, this internal model does not solely refer
to the brain or the DMN; the body itself also constitutes
an internal model, through its role in constraining and
informing perception, emotion, and action [75]. From
this perspective, the DMN and the body together in-
stantiate a distributed, embodied self-model, one that is
enacted and sustained through recursive sensing and
regulation.

Conclusion

In this paper, we propose a conceptual framework for
understanding the DMN through the lens of embodi-
ment, reframing traditional cognitive accounts of self-
related processing to include bodily dimensions. We
reconceptualized self-relevance processing as the pre-
diction of long-term interoceptive consequences, which
could be understood as value estimation. This reframing
highlights the DMN’s role as an internal model of the
internal environment, conceptualized as affective maps.
We further embodied self-referential processing by in-
tegrating key concepts from second-order cybernetics,
emphasizing the DMN’s role in the reflexive, nontrivial
operations of the brain—body system. Future work
should adopt an integrative, systems-level perspective to
investigate the DMN’s dynamic interactions with sub-
cortical, visceromotor, and interoceptive systems, in-
cluding the brainstem, hypothalamus, striatum, and
salience network. There is also a pressing need to de-
velop fMRI paradigms specifically designed to probe the
embodied dimensions of self-related processing. For
example, future studies could extend beyond currently
available measures of interoceptive sensitivity or
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gut-brain coupling by targeting simulated (or actual)
transitions within an internal state space, engaging in-
ternal models of internal bodily states and interoceptive
inference and regulation. Taken together, our embodied
perspective offers an extended view of DMN function in
supporting selfhood as deeply grounded in bodily pro-
cesses. This perspective holds important implications for
understanding the brain-body connection and may in-
form clinical approaches to disorders of self and embo-
diment.
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