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Supplementary Figure 1. DCC mean values and predictive weights in default mode 

network. The upper panel shows the DCC mean values of the default mode network regions 

with non-zero predictive weights in the original full model. The lower panel shows the same 

regions’ predictive weights
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Supplementary Figure 2. Correlations among the self-report questionnaires. Heatmaps 

show correlations among the self-report questionnaires included in studies. Numbers in squares 

indicate correlation values, and the green squares mark the ones with significant correlations (p 

< .05, two-sided).  
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Supplementary Figure 3. Distributions of the depressive rumination scores across datasets. 

Study 1 dataset showed the largest variance in the depressive rumination scores. For Study 1, 

mean = 16.69, SD = 5.627; for Study 2, mean = 13.03, SD = 4.324; for Study 3, mean = 13.77, 

SD 4.323.
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Supplementary Figure 4. Prediction performance of the dmPFC-based predictive model 

with varying numbers of predictors. Here we trained the dmPFC-based predictive model with 

a combined dataset of Studies 2 and 3 (n = 109) to examine whether the successful prediction of 

rumination required at least a certain number of predictors. The testing dataset was the Study 1 

dataset (n = 84). We varied the number of predictors to be retained in the Lasso regression and 

plotted the correlation between the model response (yfit) and the dependent variable (y). For the 

training dataset, the y-yfit correlation was from 10-fold cross-validation. The results show that 

the dmPFC-based predictive model showed significant prediction performance in both training 

and testing datasets, but it did so only when the number of predictors was greater than 80. In the 

training dataset (blue dots), the p-value was 0.005 for 80 features, 0.002 for 85 features, and 

0.003 for 90 features. In the testing (orange dots), the p-value was 0.038 for 80 features, 0.042 

for 85 features, and 0.024 for 90 features. *p < .05, one-sided permutation test in both training 

and testing datasets. 
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Supplementary Figure 5. Prediction results in additional clinical samples. To examine 

whether our model generalizes to other clinical depression datasets, we tested our model on three 

datasets from the Strategic Research Program for Brain Sciences (SRPBS) data that had both 

fMRI and behavioral (i.e., BDI-II) data. After we applied the selection criteria same as our 

original analysis (i.e., participants with mean framewise displacement under 0.25 and right-

handed), we were able to proceed with the following datasets: a dataset from Hiroshima 

Kajikawa Hospital (HKH; n = 21), Hiroshima University Hospital (HUH; n = 57), and 

University of Tokyo (UTO; n = 22). We calculated the dmPFC-based DCC variances, applied 

the refined model (i.e., a model with 21 important regions), and compared the model prediction 

with the BDI-II scores. The results showed that our model failed to generalize in other 

depression datasets (HUH: r = -0.081, p = 0.548, one-sided permutation test, 95% CI [-0.348, 

0.186]; UTO: r = -0.064, p = 0.778, one-sided permutation test, 95% CI [-0.514, 0.386]; HKH: r 

= -0.159, p = 0.765, one-sided permutation test, 95% CI [-0.622, 0.302]). There could be many 

reasons for this, but according to Yamashita et al.1, the measurement bias caused by different 

scan parameters (esp., phase encoding direction) and MRI manufacturers could be major 

contributors to the generalization failure. Yamashita et al.1 conducted detailed analyses on the 

SRPBS data to minimize the heterogeneity across multiple scan sites (i.e., data harmonization) 

and showed that phase encoding and MRI manufacturer were the two most significant 

contributors to the measurement bias. The COI (Center of Innovation in Hiroshima University) 

dataset that we included in the main manuscript was the only dataset that had the same phase 

encoding direction (i.e., A→P direction) and same MRI manufacturer (i.e., Siemens) as ours 

(i.e., Studies 1-3, Study 5). Unfortunately, no other depression datasets from the SRPBS did not 

use the same scan parameters and same scanner. For example, the HUH, UTO, and HKH 

datasets used a different phase encoding direction (i.e., P→A), and the HUH and UTO datasets 

used MRI scanner from a different manufacturer (i.e., GE). In our revision, we added these 

additional analyses and discussions on the limitation of our results.
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Supplementary Figure 6. Testing the model on an additional resting-state dataset. We tested 

our model on an additional dataset (n = 60, age = 23.35 ± 1.91 [mean ± SD], 30 males, recruited 

from the Suwon area, similar to Studies 2 and 3), which has an interesting experimental design 

feature—we administered two resting-state scans (each run was 14 minutes long) before and 

after participants watched a short emotional movie (9 minutes and 38 seconds long). We 

conducted this additional model test to further test our model’s generalizability and to see 

whether our model showed different prediction performances depending on different resting-

state conditions 2. This movie was about a mother meeting her daughter who passed away 

through virtual reality, and we selected this movie to enhance internally oriented cognitive states. 

Specifically, we assumed that the movie would increase participants' alertness and stimulate self-

referential thinking during their rest after movie watching. Scan parameters and preprocessing 

steps were the same as in Study 2. We also administered the Korean version of the RRS. (a) 

After each resting-state run, we asked participants a few questions about their cognitive and 

affective states during the run. As the plots show, participants (n = 60) had significantly higher 

levels of self-relevant thought and alertness. Statistical significance was calculated with a paired 

t-test (Alertness: t(59) = 6.44, p = 1.20e-8, one-tailed; Self-relevance: t(59) = 1.76, p = 0.042, 

one-tailed). Bounds of boxes indicate 1st and 3rd quartiles, whiskers indicate minima and 

maxima, and red lines indicate median values. (b) Our model showed a significant prediction of 

depressive rumination only with the post-movie resting-state data, r = 0.228 (p = 0.040, one-

sided permutation test, 95% CI [-0.028, 0.492]). With the pre-movie resting-state data, our model 

showed non-significant prediction, r = -0.038 (p = 0.613, one-sided permutation test, 95% CI [-

0.298, 0.222]). Each dot indicates a depressive rumination score and a model response of the 

single participant. 
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Supplementary Table 1. Demographic information and self-report questionnaires 

 

Variables Study 1 (n = 84)  Study 2 (n = 61)b  Study 3 (n = 48)b  Study 4 (n = 35)c 

Demographics        

    Age 28.0 ± 4.9a  22.9 ± 2.5  22.8 ± 2.4  44.1 ± 12.1 

    Gender (M/F) 41 / 43  31 / 30  28 / 20  18 / 17 

 Self-report questionnaires        

    RRS Brooding 7.6 ± 2.5  11.7 ± 4.8  12.6 ± 4.3  - 

    RRS Depressive rumination 16.7 ± 5.7  13.0 ± 4.3  13.8 ± 4.3  - 

    RRS Reflective pondering 7.4 ± 2.8  11.9 ± 4.2  12.4 ± 3.5  - 

    BDI Sum 6.6 ± 6.8  -  -  25.2 ± 9.0 

    CES-D -  12.6 ± 8.7  13.7 ± 7.2  - 

    STAI-X2 -  21.1 ± 10.2  24.1 ± 9.5  - 

    STAI-X1 -  39.1 ± 6.8  39.8 ± 7.8  - 
 

Note. a Mean ± Standard deviation. b Studies 2 and 3 used Korean translation of the self-report questionnaires. c Study 4 used Japanese 

translation of the self-report questionnaire
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Supplementary Table 2. Training and testing results of all models. 
 

 
 

Note. This table provides 95% confidence intervals of correlations reported in Table 1.  
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Supplementary Table 3. Training and testing results using static connectivity. 

 

 

Note. Using the 20 regions-of-interest (ROIs) within the default mode network, we trained and tested predictive models using static functional 

connectivity as input features. We corrected the significance for the multiple tests with the false discovery rate (FDR) q < .05 (p < 1e-4). All 

p-values are from one-sided permutation test. (L): Left; (R): Right. dmPFC: Dorsomedial prefrontal cortex, vmPFC: Ventromedial prefrontal 

cortex, HF: Hippocampal formation, LTC: Lateral temporal cortex, PCC: Posterior cingulate cortex, PHC: Parahippocampal cortex. Rsp: 

Retrosplenial cortex, TPJ: Temporoparietal junction, pIPL: posterior inferior parietal lobule, TempP: Temporal pole, aMPFC: anterior medial 

prefrontal cortex.
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Supplementary Table 4. Prediction results using Study 2 as a training dataset. 

 
 

Note. Using the same 20 default mode network regions-of-interest as in Table 1, we trained and tested the models using the variance of seed-based 

dynamic functional connectivity. The difference is that this shows the results of using Study 2 as a training dataset. We corrected for multiple 

comparisons with the false discovery rate (p < .009 for FDR q < .05). Here, we used Study 1 dataset for validation. All p-values are from one-sided 

permutation test. (L): Left; (R): Right. dmPFC: Dorsomedial prefrontal cortex, vmPFC: Ventromedial prefrontal cortex, HF: Hippocampal formation, 

LTC: Lateral temporal cortex, PCC: Posterior cingulate cortex, PHC: Parahippocampal cortex. Rsp: Retrosplenial cortex, TPJ: Temporoparietal 

junction, pIPL: posterior inferior parietal lobule, TempP: Temporal pole, amPFC: anterior medial prefrontal cortex.
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Supplementary Table 5. Prediction results using Study 3 as a training dataset. 

 

Note. Same as Supplementary Table 4, except that this table shows the results of using Study 3 as a training dataset. 



DYNAMIC CONNECTIVITY MODEL OF RUMINATION  13 

Supplementary Table 6. Training and testing results using the number of features same as the original model, nfeature = 84 

 

Note. This table shows the results using the combined dataset of Studies 2 and 3 (n = 109) as the training dataset and the Study 1 dataset (n = 

84) as the testing dataset. We used the same 20 default mode network regions-of-interest as in Table 1 and trained and tested the models using 

the variance of seed-based dynamic functional connectivity. We corrected for multiple comparisons with the false discovery rate (p < .003 for 

FDR q < .05). All p-values are from the one-sided permutation test.
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Supplementary Table 7. Training and testing results using the maximum number of features, nfeature = 109 

 

Note. Same as Supplementary Table 6, except this shows the results of using the maximum possible number of features for prediction.
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