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How do we incorporate contextual information to infer others’ emotional state? Here we employed a naturalistic 
context-dependent facial expression estimation task where participants estimated pleasantness levels of others’ 
ambiguous expression faces when sniffing different contextual cues (e.g., urine, fish, water, and rose). Based 
on their pleasantness rating data, we placed participants on a context-dependency continuum and mapped the 
individual variability in the context-dependency onto the neural representation using a representational similar- 
ity analysis. We found that the individual variability in the context-dependency of facial expression estimation 
correlated with the activity level of the pregenual anterior cingulate cortex (pgACC) and the amygdala and was 
also decoded by the neural representation of the ventral anterior insula (vAI). A dynamic causal modeling re- 
vealed that those with higher context-dependency exhibited a greater degree of the modulation from vAI to the 
pgACC. These findings provide novel insights into the neural circuitry associated with the individual variability 
in context-dependent facial expression estimation and the first empirical evidence for individual variability in 
the predictive accounts of affective states. 
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. Introduction 

Theory of mind (ToM) can be defined as the ability to represent
nd attribute cognitive and affective mental states to self and other,
o correctly understand and predict behavior (Abu-Akel & Shamay-
soory, 2011). There’s still an on-going debate on whether emotion
ecognition and ToM are governed by separate modules (Adolphs, 2003;
lair, 2005), or they share the common systems (Beer & Ochsner, 2006;
hakrabarti & Baron-Cohen, 2006). A close interplay between the two is
equired especially when one tries to estimate others’ emotional states,
hich could be a pivotal tool for maintaining successful social rela-

ionships in human ( Eisenberg and Miller, 1987 ). Classical theories
n emotion perception suggested that there are universal basic emo-
ions accompanied by unique patterns of autonomic physiological re-
ponses ( Ekman, 1992 ; Ekman and Cordaro, 2011 ). However, this no-
ion has been challenged by more recent studies reporting that emo-
ion perception can be influenced by various non-facial cues includ-
ng body expression ( Meeren et al., 2005 ) and other external contex-
ual information such as emotional labels, verbal description, or visual
cene, especially when the facial emotional cues are unclear ( Kim et al.,
∗ Corresponding author. 
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004 ; Barrett et al., 2007 ; Mobbs et al., 2006 ; Schwarz et al., 2013 ;
ieser et al., 2014 ; Klein et al., 2015 ; Righart and Gelder, 2008 ). Fur-

hermore, facial expressions associated with emotions (e.g., happy, fear,
isgust, anger, and surprise) were differentially interpreted in the West-
rn and the Eastern cultures as each group attended to distinctive sets of
acial muscles ( Jack et al., 2012 ), supporting the view that emotion per-
eption could be modulated by contextual information such as language
nd culture ( Hoemann and Barrett, 2019 ). 

A number of neuroimaging studies have revealed several neu-
al structures critically involved in processing emotional information
rom faces. For example, the amygdala responds to affective signif-
cance of faces at the early stage of face presentation ( Pessoa and
dolphs, 2010 ; Oya et al., 2002 ; Méndez-Bértolo et al., 2016 ; Müller-
ardorff et al., 2018 ). Importantly, such early activity in the amyg-
ala may be modulated by the downstream projections from the pre-
rontal cortex ( Kim et al., 2011 ), which is known to be critical for
ontext-dependent interpretation of ambiguous affective information
etected by the amygdala ( Kim et al., 2003 ; 2004 ; Mobbs et al., 2006 ;
rticka et al., 2014 ; Kim et al., 2017 ; Lee and Siegle, 2014 ) and also

or resolving conflict between early amygdala response and competing
nterpretations ( Etkin et al., 2006 ). These results suggest that the com-
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a  
unication between the prefrontal cortex, particularly its medial sec-
ion, and the amygdala serves a crucial role in context-dependent facial
motion recognition. 

Some studies have investigated the individual differences in the de-
ree of context-dependent facial emotion processing. For example, par-
icipants’ interpretation of the ambiguous facial expression could be in-
uenced by individuals’ approach and inhibition tendency ( Lee et al.,
012 ), suggesting that contextual information could bring individual
ifferences in estimating other’s facial information, especially in am-
iguous settings. However, little is known about the key neural fea-
ures associated with individual differences in context-dependent pro-
essing of ambiguously-valenced faces. A recent data-driven study sug-
ested that individuals had their own specific emotional physiological
ngerprints that did not coincide with established emotion categories
 Azari et al., 2020 ). This finding calls for a question whether individ-
als with similar interpretation of others’ emotional expressions would
ave the similar neural representation of the affective states, especially
n an ambiguous setting. 

Estimating another person’s affective state can be theoretically un-
erstood as formulating interoceptive prediction signals to synchro-
ize with the target affective state based on previous experiences
 Gendron and Barrett, 2018 ). Given this, we can hypothesize that in-
ividuals with greater context-dependency would incorporate contex-
ual cue more to simulate appropriate affective state of others as a form
f interoceptive prediction toward ambiguous facial information. The
nterior insula (AI) is known to integrate multiple sensory information
ncluding interoceptive signals such as visceral ( Craig, 2002 ) and noci-
eptive ( Mazzola et al., 2009 ) signals, and exteroceptive signals such as
omatosensory, ( Pugnaghi et al., 2011 ) auditory, ( Bamiou et al., 2006 )
nd olfactory signals ( Mak et al., 2005 ; for detailed review, Uddin et al.,
017 ). It has been strongly implicated in interoception and individual
ifferences in interoceptive sensitivity ( Critchley et al., 2004 ). Because
nteroceptive sensitivity is associated with individual differences in em-
athy ( Grynberg and Pollatos, 2015 ) and accuracy in estimating oth-
rs’ affective state based on facial information ( Terasawa et al., 2015 ;
al Monte et al., 2013 ), context-dependent emotional literacy towards
thers may be critically dependent upon the neural circuitry for intero-
eptive representation. 

Through its intimate functional coupling with the AI, the medial pre-
rontal cortex (MPFC) appears to serve as an ideal location for intero-
eptive prediction ( Barrett and Simmons, 2015 ; Seth, 2013 ). The MPFC
as been widely implicated in emotion recognition and regulation pro-
esses ( Lindquist et al., 2012 ; Etkin, Egner, & Kalisch, 2011). In addi-
ion, Klumpp et al. (2017) reported the positive relationship between
he pgACC and the amygdala activity associated with the decrease in
elf reports of negative feeling among social anxiety patients during im-
licit emotion regulation task. Based on these findings, one can predict
hat the degree of functional coupling between these regions would be
ssociated with individual differences in context-dependent perception
f ambiguous facial expression, but this has not been formally tested
et. 

In the present study, we developed a novel task where participants,
fter being presented with odor-cues (e.g., urine, fish, rose, water),
atch an actor sniffing one of the supposedly unpleasant, pleasant, and
eutral odors, and estimate the affective state (e.g., pleasantness) of the
ctor. This task is different from most of the previous similar studies that
sed predefined set of emotions (e.g., fear and happiness) and therefore
onfined individual responses into a set of responses that lies within the
motion categories ( Wicker et al., 2003 ; Hoemann and Barrett, 2019 ).
he rationale of the current experiment design was two-fold. First, we
anted to use more naturalistic stimuli to study affective information
rocessing, and second, we aimed to step aside from the issue related to
he predefined categories of emotions and capture the individual vari-
bility in estimating other’s affective states. To do so, we fitted pleas-
ntness rating data to a linear regression model to measure individual
ontext-dependency. Then, we searched for a neural circuitry associated
2 
ith the individual variability of context-dependency by using a uni-
ariate analysis on the neural responses at the video and the response
hases of each trial. In addition, using an inter-subject representation
imilarity analysis ( Van Baar et al., 2019 ), we aimed to identify the
rain regions whose activity patterns reflect the individual variability
f context-dependency. Lastly, to assess effective connectivity among
he observed regions of interest, we adopted a dynamic causal model-
ng (DCM) and a parametric empirical bayes (PEB). 

. Methods 

.1. Participants 

Thirty-nine healthy participants (all females; age range = 22–44;
ean age = 30.82) were recruited for the study. A power analysis for
 repeated-measures ANOVA testing for within factors suggested that
he appropriate sample size to achieve a power of 0.95 with an 𝛼 of
.05 and a medium effect size of 0.25 was 36. Expecting loss of par-
icipants due to technical difficulties, excessive head movement, and
isconception of the experimental instruction, we recruited 39 partic-

pants. Given that some recent studies of empathy have suggested gen-
er differences in the neural response to empathy-related stimuli, we
ecruited only female participants to maximize the homogeneity within
articipants ( Derntl et al., 2010 ; Schulte-Rüther et al., 2008 ). One out
f 39 participants was excluded due to artifacts in neuroimaging data.
he remaining 38 participants were included in the final analyses (age
ange = 22–44; mean age = 30.56). All participants were right-handed,
ad normal vision, had no history of psychiatric or neurological diseases,
nd had no structural brain abnormalities. Informed consent approved
y the Institution Review Board of Korea University was obtained from
ll participants prior to the experiments. 

.2. Stimuli 

The actors in the videos were asked to sniff the cup containing wa-
er and to stay in neutral facial expression, and four seemingly identical
ideos were recorded from each actor to be randomly assigned to the
our odor conditions, although participants were told that the actors
ere sniffing the odor presented prior to the video. This procedure was
dded to ensure that participants perform the tasks based on subjective
nterpretations of the visual stimuli (i.e., videos) constructed from con-
extual information (i.e., odor cues) rather than based on visual informa-
ion. Although the actors were explicitly asked to pose neutral expres-
ions, participants must have been voluntarily engaged in deciphering
he meaning behind the neutral facial expression to resolve ambiguities
risen from the conflict between the neutral expression and the contex-
ual information because they were instructed to guess how the actors
n the video would feel. We believe that this assumption is ecologically
alid because people often do not reveal their emotion on faces in real
ife. For this reason, we will call the neutral facial expression as the
mbiguous facial expression for the rest of the study. Four context cues
e.g., urine, fish, water, and rose) were selected to achieve sufficient
ange of valence ranting so that individual context-dependency could
e the linear composition of the valnce ratings of context cues. From an
ndependent group of samples ( N = 19), we obtained valence ratings of
ach odor and video stimuli to compute average valence ratings of them,
nd the valence rating (mean = 3.09 ± 0.36) of each video confirmed
ts emotional neutrality. The average valence ratings of each videos and
dor words were named as Video Independent Rating (VIR) and Word
ndependent Rating (WIR), respectively, and were later used to estimate
ndividual context-dependency (See Behavior Analysis). 

.3. Procedure 

All subjects were checked for their eligibility for MRI scanning upon
rriving at the experimental room. Prior to the scanning, all participants
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Fig. 1. A schematic diagram of a typical trial of the main behavioral task. In each trial, participants were first presented with one of four odor-related words (i.e., 
urine, fish, rose, water) for 2 s (Context cues), and then with a 4 s video clip (Video phase). Finally, participants were presented with a question ( “how does he/she 
feel? ”) prompting their answers on a five likert-scale (1: very unpleasant, 2: pleasant, 3: neutral, 4: pleasant, 5: very pleasant), and asked to estimate the actor’s 
feeling accurately and quickly (Response phase). 
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d  
eceived instructions and performed a couple of practice trials to get
amiliar with the experimental procedure. During the scanning session,
ll condition trials were pseudo-randomly presented in an event-related
esign. In each trial, participants were first presented with one of four
dor-related words (i.e., urine, fish, rose, water) and then watched a
 s video clip of an actor sniffing an object in a cup, which was then
ollowed by another fixation of one to three seconds ( Fig. 1 ). Lastly,
articipants estimated the pleasantness level of the actor in the video.
n this last response phase, participants was presented with a question
 “how does he/she feel? ”) prompting their answers on a five likert-scale
1: very unpleasant, 2: pleasant, 3: neutral, 4: pleasant, 5: very pleasant).
he response cursor was presented at the middle (e.g. the neutral), and
he participants moved the cursor to the left or to the right to select
esired pleasantness level. Participants were informed of the five likert
leasantness level prior to the experiment and were asked to provide an
ccurate answer as quickly as possible. Each scanning session included
0 trials (i.e., word type (4) × actor (20)). At the end of the experiment,
ll participants were debriefed about the goal of the experiment and
aid approximately 40,000 KRW ( ≈ $38) for participation. 

.4. Behavioral data analysis 

For the main purpose of this study, we estimated the degree to which
ach participant’s pleasantness ratings of the actors in the video were
nfluenced by contextual information when the visual information (i.e.,
acial expression) is held neutral across conditions. To test the main
ffects of odor type on pleasantness ratings and reaction times, we per-
ormed repeated-measures one-way ANOVA with odor type (i.e., urine,
sh, rose, and water) as independent variables and with pleasantness
atings and reaction times as dependent variables. For the post-hoc anal-
sis, the pleasantness rating and the reaction time of each odor cue
ere compared against those of the water condition. We then exam-

ned the individual differences in the degree of the context-dependency
3 
nd the video dependency in estimating other’s pleasantness. Both WIR
nd VIR were fitted to responses in each participant to generate subject-
pecific indices of context-dependency ( 𝛽𝑊 𝐼𝑅 ) and video dependency
 𝛽𝑉 𝐼𝑅 ). This approach measured the degree of contextual information-
ependency ( 𝛽WIR ) after controlling for individual propensity to incor-
orate the facial expression itself into their pleasantness ratings ( 𝛽VIR ).
e also examined the possibility that contextual information processing

ould be in competition with the visual facial expression processing, by
hecking the correlation between the two beta coefficients. 

esponse = 𝛽0 + 𝛽𝑊 𝐼𝑅 ∗ 𝑊 𝐼𝑅 + 𝛽𝑉 𝐼𝑅 ∗ 𝑉 𝐼𝑅 + 𝑒 

.5. fMRI data acquisition 

All neuroimaging data were collected with a 3T Siemens Trio MRI
canner (MAGNETOM Trio, A Tim System; Siemens AG, Erlangen, Ger-
any) with a 12-channel birdcage head coil located at the Korea Uni-

ersity Brain Imaging Center (KUBIC). We acquired functional images
sing gradient echo-planar images (EPI) with Blood Oxygenation Level-
ependent contrast (TR = 2000 ms; TE = 30 ms; flip angle = 90°;
OV = 240 mm; 3 × 3 × 3 mm in-plane resolution; 80 × 80 matrix
ize; and 36 slices with no gap), and high-resolution structural images
TR = 1900 ms; TE = 2.52 ms; flip angle = 9°; 1 × 1 × 1 mm in-plane
esolution; and 256 × 256 matrix size). The experiment task was pre-
ented through an MR-compatible LCD monitor mounted on a head coil
refresh rate: 60 Hz; display resolution: 640 × 480 pixels; viewing angle:
0°) operating on MATLAB 2009b with Cogent 2000 stimulus presenta-
ion software. 

.6. Image preprocessing 

The neuroimaging data were preprocessed by using the
efault preprocessing pipelines of the CONN toolbox 2018b
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 www.nitrc.org/projects/conn , RRID:SCR_009550; Whitfield-Gabrieli
nd Nieto-Castanon, 2012 ). The images were first realigned, distortion
orrected, centered to (0, 0, 0) coordinates, and slice-time corrected in
equential order. The resulting images were then spatially normalized
o the standard Montreal Neurological Institute EPI template and
esampled into 2 × 2 × 2 mm 

3 voxel size. Finally, all the resulting
mages were then smoothed with a 8 mm full-width at half-maximum
FWHM) Gaussian kernel. This smoothing level has been shown to
mprove inter-subject functional alignment, while retaining sensitivity
o mesoscopic activity patterns that are consistent across individuals
 Shmuel et al., 2010 ). 

.7. Neuroimaging data analysis: univariate approach 

First-level analyses: For the first-level analyses, we analyze the pre-
rocessed neuroimaging data using the SPM12 (Wellcome Department
f Imaging Neuroscience, London, United Kingdom). To examine the
ffects of context on neural representation during the estimation of
ther’s affective state, we designed a general linear model (GLM) 1
hat consisted of four onset regressors for video phase for each con-
ext cue, and four onset regressors for response phase for each con-
ext cue, resulting in total of eight onset regressors. In addition, GLM2
as designed to find brain regions associated with the individual de-
endency to the contextual information at the video phase and the re-
ponse phase. Nine regressors of interest were included in the model
nd convolved with hemodynamic response function. The GLM2 for
he 1st level anaysis included two regressors at the context-cue phase
i.e., context-cue onset and parametric modulator of WIR), three regres-
ors at the video phase (i.e., video onset and parametric modulators of
IR and VIR), and four regressors at the response phase (i.e., response

nset, actual response ratings, and parametric modulators of WIR and
IR). 

To assess unique contributions of WIR and VIR to BOLD signals, we
erformed two different GLM analyses with orthogonalization option
urned on where either WIR or VIR was the last parametric modulator
f the onset regressor at the response phase. For example, in the GLM
esigned to assess the effect of the WIR, the order of the parametric
odulators added to the response phase onset regressor was 1) actual

esponse, 2) VIR, and 3) WIR. We ran these two separate analyses for
IR and VIR, given that, in SPM, the GLM with multiple parametric
odulators could be problematic particularly when the orthogonaliza-

ion option is turned on, because such an option could differentially
ffect the parameter estimates of the modulators and its interpretation
epending on the order of the parametric modulators. ( Mumford et al.,
015 ). 

Six additional head motion regressors were modeled to capture
ovement-related effects in both GLMs. In each participant, the para-
etric modulation maps of WIR and VIR at both video and response
hases were estimated to identify a neural circuitry associated with
hanges in valence of contextual information as well as the valence of
he video stimuli. 

Using NeuroSynth customized meta-analysis map for Regions Of Interest :
he analysis of the first-level contrast and parametric modulation was

imited to the grey-matter areas with a grey-matter mask defined by the
utomated anatomical labeling (AAL) atlas. Based on our a priori hy-
otheses of the present study, we further restricted the brain regions of
nterest to the areas associated with affective information processing for
elf and others. We used the Neurosynth ( www.neurosynth.org ) to select
200 studies contained the keywords of ‘theory of mind’, ‘valence’, and

emotion’ and subfields of ‘emotion’ including ‘emotional responses’ that
howed the rate of keyword appearance above 5% in the main text. Then
e generated a customized meta-analysis brain mask that survived asso-

iation test of keywords at FDR p < 0.01. Some of the key brain regions
n the mask included the medial prefrontal cortex including the anterior
ingulate cortex (ACC), the amygdala, and the posterior cingulate gyrus
nd the anterior insula (Supplementary Figure S2). A small-volume cor-
4 
ection (SVC) with family-wise error at cluster level FWEc ( p < 0.05)
as applied to address the issues of multiple comparison. 

Second-level analyses: Using the GLM1, we investigated brain re-
ions reflecting effects of the context cue within the search area of the
eta-analysis map customized from the Neurosynth. One-way ANOVA
as performed between the four context cue conditions at the video
hase and at the response phase. In addition, using the GLM2, we
nvestigated brain regions reflecting individual variability in context-
ependent facial expression processing, as denoted by 𝛽WIR . We per-
ormed exploratory whole-brain multiple regression analyses with the
arametric modulation maps of WIR at both response and video phase
o identify brain regions showing significant correlations between their

IR-dependent changes in BOLD signals across the conditions and 𝛽WIR .
hen, we conducted ROI analyses using the resulting brain regions to
est a priori hypotheses of the present study. 

.8. Neuroimaging data analysis: multivariate approach 

We also employed a multivariate pattern analysis to find specific
rain regions that represent inter-subject variabilities in contextual de-
endency on facial emotion processing. The multivariate pattern anal-
sis has been widely used in the field of cognitive neuroscience to
xamine the population codes and representations of psychological
tates or information processing ( Chang et al., 2015 ; Huth et al., 2016 ;
amitani and Tong, 2005 ; Fournel et al., 2016 ). Particularly, the repre-
entational similarity analysis (RSA) can be used to identify the brain
egions that reflect the structure of psychologically relevant information
 Haxby et al., 2014 ; Kriegeskorte et al., 2008 ). In this study, we used an
nter-subject RSA (IS-RSA) to identify brain regions associated with the
nter-subject variability in context-dependency ( van Baar et al., 2019 ). 

To minimize false positive findings, we parceled the whole brain
nto functionally meaningful regions for optimal search, by using a pri-

ri 200-parcel map from the Neurosynth database, which clustered the
hole-brain atlas based on a meta-analytic functional coactivation pat-

ern ( https://identifiers.org/neurovalut.collection:2099 ). We excluded
eventeen parcels from the map because they were not included in our
can coverage, resulting in 183 parcels for the analysis. We expanded the
OI map used for the univariate analysis to the whole-brain areas for the
ultivariate pattern analysis because previous studies reported differ-

nt statistical properties and implications between the two approaches
 Coutanche, 2013 ; Jimura and Poldrack, 2012 ; Davis et al., 2014 ). For
xample, the multivariate pattern analysis is known to be more sensi-
ive to voxel-level variability within subjects but less sensitive to subject-
evel variability in mean activation, compared to the univariate analysis
 Davis et al., 2014 ). The behavioral dissimilarity matrix representing the
ndividual differences in context-dependency in processing facial emo-
ions was computed by measuring the between-subject Euclidean dis-
ance of the parameter 𝛽𝑊 𝐼𝑅 for all dyads of participants. 

For the neuroimaging data, we computed inter-subject dissimilarity
atrix for each of the 183 parcels of the neural activation maps at the

nset of the video phase paired with the water cue to measure inter-
ubject dissimilarity of mean activity patterns while watching videos.
o do so, we built first-level GLMs specifically for the IS-RSA, which
as composed of six different onset regressors of 1) context-cue phase,
) video phase with urine cues 3) video phase with fish cues, 4) video
hase with water cues, 5) video phase with rose cues, 6) response phase,
nd one parametric modulator of the WIR at the context-cue phase. We
dded the parametric modulator of the WIR to the cue phase regressor to
egress out any valence-related variability of BOLD signals time-locked
o the cue phase. We believe that the hemodynamic responses to the
ideo phase were successfully deconvolved from those to the cue phase,
ecause the IS-RSA results found at the video phase are different from
hose found at the cue phase (Supplementary Figure S9). Furthermore,
e also performed the same analysis without the WIR to assess the de-
ree of influence of context-valence at the context-cue phase to the video
hase (see Supplementary figure S1 & S2). For this analysis, we were

http://www.nitrc.org/projects/conn
http://www.neurosynth.org
https://identifiers.org/neurovalut.collection:2099
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pecifically interested in the water cue condition at the video phase,
hich we believed is appropriate for examining individual differences

n the degree of contextual dependency while inter-subject comparisons
re maximally controlled for other irrelevant variables such as motor re-
ponse preparation related to individual differences in ratings. The same
S-RSA was performed at the context-cue phase (see supplementary fig-
re S10). 

To identify specific brain regions whose neural representations are
ssociated with behavior, the nonparametric Kendall’s tau-a correlation
as computed between parcel dissimilarity matrix and behavioral dis-

imilarity matrix ( Nili et al., 2014 ). To test the significance of the result-
ng tau-a, the behavior RDM was shuffled while fixing the neural RDM
or the permutation test, and the same statistic was computed for 10,000
imes to generate a null distribution for the hypothesis testing. For exam-
le, after shuffling the behavioral RDM, the behavioral distance between
ubject 1 and 5 could be paired with the neural dissimilarity between
ubject 3 and 4 rather than with the neural dissimilarity between subject
 and 5. A Bonferroni correction was applied based on the number of
arcels to adjust p- values for multiple comparison and the p- values re-
aining below 0.05 after this correction suggested significant relation-

hip between inter-subject behavioral patterns of context-dependency
nd the neural representation patterns of the parcel. 

We applied the same procedures to each of the other contextual cues
i.e., Urine, Fish, and Rose) at the video phase exclusively in the brain
egions identified in the water condition to narrow down the parcels
pecific to each context. 

.9. Dynamic causal modeling 

Dynamic Causal Modeling (DCM) infers the effective connectivity
EC) between brain regions by constructing a model with more than
ne node and estimating the strength between the nodes ( Friston et al.,
003 ). Parametric Empirical Bayes (PEB) generates a group-level model
fter considering individuals’ DCMs with covariates of inter-subject vari-
bility ( Friston et al., 2016 ). The PEB analysis reports the credibility of
ach connectivity and the effects of the covariates, using the Bayesian
pproach (See Zeidman et al., 2019a , Zeidman et al., 2019b for more de-
ails about the DCM and PEB, respectively). To investigate the effective
onnectivity of the brain regions associated with individual variability
n context-dependency, DCM-PEB analysis was performed using SPM12
ased on the individuals’ contrast maps from the parametric modulation
nalysis at the response phase and the multivariate dissimilarity maps at
he video phase. The time-series of the two brain parcels from the Neu-
osynth 200-parcel map and two 4 mm sphere of the peak voxels [pgACC
MNI: x = 6, y = 38, z = 6), amygdala (MNI: x = − 22, y = − 8, z = − 14)]
ere extracted and mean-centered. For the DCM specification, the de-

ault setting was set to generate a full model (VOI timings: 2 s, Echo
ime: 0.04, Modulatory Effect: bilinear, States per Region: one, Stochas-
ic: no, center input: no, and Time series). For the PEB specification, the
ongregate of individuals’ full model DCM was inserted to generate a
ingle PEB model. Our primary purpose of the DCM-PEB analysis was to
xamine the individual differences in modulatory effects of experimen-
al perturbation (i.e., context-dependency) on the effective connectivity
mong the ROIs. Thus, the PEB group-level design matrix consisted of
wo columns: one representing the average connectivity and the other
epresenting the individual context-dependency. The statistical analysis
or the PEB was performed at p > 0.95. 

. Results 

.1. Behavioral results 

Participants rated the pleasantness level of the actors in video clips
ollowing the negative odor cues (i.e., urine and fish) to be more un-
leasant and those following the positive odor cue (i.e., rose) more
5 
leasant, compared to those following the neutral odor cue (i.e., wa-
er) ( Fig. 2 ). A repeated-measures one-way ANOVA revealed a sig-
ificant main effect of odor types (i.e., urine, fish, rose, and wa-
er) on pleasantness ratings, F (1.376, 50.902) = 114.910, p < 0.001
Greenhouse-Geisser corrected). Post-hoc analyses revealed that, com-
ared to the mean rating of the control condition (i.e., water), the
verage ratings of all three odor conditions showed significant differ-
nces (urine: t (37) = − 13.943, p < 0.001; fish: t (37) = − 9.739, p <
.001; rose: t (37) = 7.737, p < 0.001). The average reaction time of
he participants ranged from 628 milliseconds (ms) to the 2547 ms,
ith the group average of 1336 ms. A repeated-measures one-way
NOVA on the reaction time data also demonstrated a significant main
ffect of odor types, F (3111) = 17.740, p < 0.001 ( Fig. 2 ). Post-hoc
-tests revealed that the mean reaction times of all three odor con-
itions (i.e., urine: t (37) = 5.075, p < 0.001; fish: t (37) = 4.546, p

 0.001; rose: t (37) = 5.853, p < 0.001) were significantly differ-
nt from the mean reaction time of the water condition. The context-
ependency ( 𝛽𝑊 𝐼𝑅 ) ranged from − 0.028 to 1.591 (mean = 0.842, ±
.401) and the video-dependency ( 𝛽𝑉 𝐼𝑅 ) ranged from − 0.202 to 0.372
mean = 0.025 ± 0.128). Negative correlation between the context-
ependency and the video-dependency was observed ( r (36) = - 0.366,
 = 0.024), indicating that the more individuals used the valence of the
ontext cues in estimating other’s pleasantness, the less they were likely
o use the valence of the video stimuli. 

.2. Neuroimaging results: multiple regression analysis with individual 

ifferences in context-dependency and general effects of context cues 

We first conducted a whole-brain regression analysis to identify brain
egions whose activities covary with individual differences in contextual
nfluences. With the first-level contrast maps of all parametric modula-
ors against baseline at events of 1) context-cue, 2) video, and 3) re-
ponse phase, we conducted second-level analysis using context depen-
ency as a covariate. The whole-brain analysis revealed that individual
ifferences in the context modulation at the response phase was neg-
tively associated with activities in the left precuneus, anterior cingu-
ate cortex, right supplementary motor area, right post-central gyrus,
eft visual cortex, and left supramarginal gyrus (see Table 1 ). No sig-
ificant voxels were found in the context-cue and video phases at the
hole-brain level. As a post-hoc analysis, we restricted the search space
f the 2nd level analysis using a customized brain mask map from the
eurosynth package. At the video phase, this analysis revealed that the

nferior frontal gyrus ( x = 50, y = 28, z = 2, Z = 5.01, p < 0.05, one-
ailed, SVC corrected unless otherwise stated) was positively associated
ith the βWIR . At the response phase, the activities of the pgACC ( x = 6,
 = 38, z = 6, Z = 4.29, two-tailed, p < 0.05; Fig. 3 B ) and the amygdala
 x = − 22, y = − 8, z = − 14, Z = 4.32, two-tailed, p < 0.05; Fig. 3 D )
ere negatively correlated with the 𝛽𝑊 𝐼𝑅 . The relationship between

he degree of context-dependency and the changes in the activities of
he pgACC and amygdala was negative, indicating that more context-
ependent participants showed increasing BOLD responses to context
ues with more negative valence ratings in both the pgACC and the
mygdala. To address possible inefficient deconvolution due to the rel-
tively short time interval between the response phase and the context
ue of the subsequent trial, we implemented two additional GLMs: one
ithout response regressor (no-response GLM) and the other without

ontext cue regressors (no-context GLM). The no-response GLM revealed
o significant brain regions (see Supplementary Information), but the
o-cue GLM revealed the same neural regions as the GLM2, which con-
rms that the main findings were not due to inefficient deconvolution. 

Furthermore, we investigated the general effects of the context cue
y performing one-way ANOVA between the context cues at the video
nd response phase. No significant brain regions survived statistical
hreshold. Any effects of the context cues from the baseline revealed
 network of brain regions including fusiform face area (FFA), ventro-
edial prefrontal cortex (VMPFC), pgACC, bilateral hippocampus, and
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Fig. 2. Behavior results of the pleasantness estimation. A) The negative correlation between the context-dependency and the video-dependency ( r (36) = − 0.366, 
p = 0.024) indicated that individuals with more context-dependent tend not to use the valence of the video stimuli in estimating other’s affective state. B) The mean 
ratings of pleasantness across conditions from the independent study group (red) and the main study group (green). A repeated-measures one-way ANOVA revealed 
that participants in the main study (green) rated more negatively on the video clips following negative odor cues (i.e., urine and fish) and more positively on those 
following a positive odor cue (i.e., rose), compared to those following a neutral odor cue. F (1.376, 50.902) = 114.910, p < 0.001 (Greenhouse-Geisser corrected). 
Post-hoc analyses of the main study group (green) revealed that the average ratings of all three odor conditions were significantly different from the mean rating of 
the control condition (i.e., water). 

Fig. 3. A) Two representative participants’ pleasantness rating data (Orange = context dependent, blue = context independent). The pleasantness ratings of the 
individual responses were fitted to the odor valence to estimate individual differences in the dependency on contextual information, 𝜷𝑾 𝑰 𝑹 . Multiple regression of 
the WIR parametric maps on 𝜷𝑾 𝑰 𝑹 at the response phase showed that both the pgACC (B and C: x = 6, y = 38, z = 6, Z = 4.28) and the amygdala (D and E: x = − 22, 
y = − 8, z = − 14, Z = 4.25) reflected individual differences in context-dependency (red, p < 0.005; yellow, p < 0.001, FWEp corrected p < 0.05) when estimating 
pleasantness for others. 

Table 1 

Clusters found in the multiple regression analysis with 𝜷𝑾 𝑰 𝑹 at the response phase. 

Structure BA Cluster size x y z T -stat Z score 

Supramarginal gyrus (L) 40 345 − 54 − 28 48 5.23 4.48 
Anterior cingulate gyrus (R) 32 203 6 38 6 4.95 4.29 
Post-central gyrus (R) 1 517 56 − 20 50 4.73 4.14 
Supplementary motor area (R) 6 213 8 − 2 52 4.7 4.12 
Precuneus (L) 31 210 − 10 − 52 42 4.47 3.96 
Visual Cortex (L) 19 880 − 22 − 60 12 5.01 4.34 

All brain regions were p < 0.001 FWEc corrected at p < 0.05, two-tailed. 

6 
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Fig. 4. Inter-subject representational similarity analysis. IS-RSA revealed that the participants who employed similar strategies (i.e., similar 𝜷𝑾 𝑰 𝑹 , here shown as 
behavior response histograms for graphical purpose only) in estimating other people’s pleasantness levels displayed similar activity patterns in brain regions including 
the ventral anterior insula, dorsal anterior insula, posterior lateral orbitofrontal cortex. The neural patterns at the video phase were extracted when the context cue 
was water, to maximally control for irrelevant neural activities (e.g., motor preparation) while leaving relevant psychological properties intact. 

t  

a  

b

3

(

 

f  

d  

r  

t  

s  

(  

t  

t  

c  

c  

t  

s  

e  

o  

o  

s  

a

3

 

c  

i  

d  

n  

t
 

t  

a  

t  

Fig. 5. The results from the DCM-PEB analysis showing the effective connec- 
tivity (EC) significantly modulated by 𝜷𝑾 𝑰 𝑹 at the response phase. The black 
dashed lines indicate experimental input. The red straight line indicates posi- 
tive average connectivity across all participants. The red and blue dashed lines 
indicate positive and negative correlation, respectively. The dotted lines from 

vAI to pgACC indicate that the effective connectivity linearly increased with the 
𝜷𝑾 𝑰 𝑹 , whereas the effective connectivity from vAI to amygdala and from pgACC 
to rdAI linearly decreased with the 𝜷𝑾 𝑰 𝑹 (Amyg: amygdala, pgACC: pregenual 
anterior cingulate cortex, rdAI: rostrodorsal anterior insula, and vAI: ventral 
anterior insula). 
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emporal pole (Fig S3) at the video phase. At the response phase, the
mygdala, pgACC, and VMPFC were significantly activated from the
aseline (Fig S4). 

.3. Neuroimaging results: inter-subject representational similarity analysis 

IS-RSA) 

Significant inter-subject representational similarity effects were
ound in three brain parcels including the ventral anterior insula, the
orsal anterior insula, and the lateral orbitofrontal cortex ( Fig. 4 ). These
esults indicate that inter-subject dissimilarity of the neural activity pat-
erns during facial processing paired with a neutral odor cue corre-
ponded to the inter-subject distance pattern of the context-dependency
i.e., 𝜷𝑾 𝑰 𝑹 ) ( Fig. 4 ). Considering that the pleasantness ratings in the wa-
er conditions are almost identical among participants, we assumed that
hese neural patterns are likely to reflect individual variability in psy-
hological processes related to context-dependent facial emotion pro-
essing, rather than individual variability in behavioral response. In-
erestingly, none of the reported brain regions were significant in the
tandard univariate analysis. The same IS-RSA analysis was repeated for
ach odor condition within the same three parcels. The neural activity
f the rdAI was observed at the urine condition. The IS-RSA performed
nto the GLM without the WIR parameter added to the context cue on-
et regressor revealed larger clusters of the anterior insula (Figure S1)
nd activities of vAI across all conditions (Figure S2). 

.4. Neuroimaging results: DCM-PEB analysis 

The DCM-PEB analysis tested the modulatory changes in effective
onnectivity among the regions of interest against zero due to variations
n the experimental conditions and individual variability in context-
ependency ( Fig. 5 ). For each effective connectivity, the average con-
ectivity changes and its posterior probability are shown in supplemen-
ary materials and methods ( Supplementary Table S1 ) ( Table 2 ). 

The DCM-PEB analysis at the response phase explored the direc-
ional interactions among the brain regions obtained from the IS-RSA
nd the GLM analysis. Credible positive correlations between modula-
ory changes and the odor valence were observed in the projections
7 
rom pgACC to amygdala (beta = 0.62, pp = 1.0). No credible neg-
tive correlations between modulatory changes and the odor valence
ere observed. Credible positive linear relationships between effective

onnectivity and individual context-dependency were observed in the
rojections from vAI to pgACC (beta = 1.02, pp = 0.97). Credible neg-
tive linear relationships between effective connectivity and individual



K.I. Kim, W.H. Jung, C.-W. Woo et al. NeuroImage 258 (2022) 119355 

Table 2 

Cluters found in the multiple regression analysis with orthogonalized WIR at the response phase. 

Structure BA Cluster size x y z T -stat Z score 

Response Phase w/ WIR – Negative Correlation 

Anterior cingulate gyrus (R) 32 147 6 38 6 4.93 4.28 
Amygdala (L) 53 123 − 22 − 8 − 14 4.89 4.25 

All brain regions were p < 0.001, FWEc corrected at p < 0.05, two-tailed. 
The customized meta-analysis mask was created from the python package NeuroSynth ( www.neurosynth.org ). 
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ontext-dependency were observed in the projections from the vAI to
mygdala (beta = − 1.42, pp = 1) and from pgACC to rdAI (beta = − 1.62,
p = 0.98). 

. Discussion 

This study investigated the neural correlates of individual differ-
nces in utilizing contextual information to estimate affective states
rom other people’s faces. As predicted, we found a large variance in
articipants’ ratings of pleasantness on ambiguous facial expressions,
hich was mainly caused by the degree to which participants’ ratings
ere influenced by the contextual cues. This behavioral trend in the
articipants’ performance was reflected in the functional neuroimaging
ata during the task as well. First, at the univariate level, the individ-
al differences in context-dependency were associated with the activ-
ties of the pgACC and the amygdala at the response phase. Second,
t the multivariate level, the IS-RSA results indicated that the distance
attern between the dyads of participants’ pleasantness ratings was cor-
elated with the distance pattern between the same dyads of partici-
ants’ neural activities in the ventral AI and the piriform gyrus while
atching the videos. In other words, individual differences in the ac-

ivity patterns in these regions were associated with those in context-
ependency among participants. To investigate the causal relationships
mong all the identified brain regions, the DCM/PEB model was built
ased on the neural regions from the parametric GLM analysis and the
S-RSA while considering the context-dependency as a between-subject
ovariate. This analysis revealed that the effective connectivity from
he vAI to the pgACC at the response phase was positively modulated
y the context-dependency, implying that people with greater context-
ependency showed stronger connectivity strength in those neural path-
ays. To summarize, the present findings suggest that participants with
igher dependency to contextual cues are characterized by the distinc-
ive neural patterns in the vAI, which sends out greater modulatory sig-
als to the pgACC while estimating other people’s affective states. 

.1. The anterior insula as the hub of information integration for empathic 

esponses 

The neural mechanism behind empathy involves the representation
f the internal states of others to synchronize with their affective states
 Gendron and Barrett 2018 ). Consistent with this idea, reading other
eople’s emotional states appears to depend on individual differences in
nteroceptive sensitivity. For example, individuals who were more sen-
itive to their own heartbeats were more likely to feel greater compas-
ion to painful pictures ( Grynberg and Pollatos, 2015 ) and more tuned
t recognizing subtle emotional features (Terasawa et al., 2014). The
eta-analysis of empathy ( Schurz et al., 2020 ; Fallon et al., 2020 ) and

nteroception ( Schultz, 2016 ) indicated strong involvement of the AI
n both processes. Indeed, the right AI was the only brain region that
ignaled for both interoception and empathy ( Zaki et al., 2012 ) and a
onjunction analysis of empathy, interception, and social cognition re-
ealed the AI as one of the core regions for the integration of intero-
eption and social information ( Adolfi et al., 2017 ). In an autism spec-
rum disorder study (ASD), the abnormal activities of the right AI of the
SD males with the alexithymia were linked to increased bodily signals

e.g., skin conductance rate) and diminished discriminability of painful
8 
mages ( Gu et al., 2015 ). Based on these findings, we speculate that the
ctivity pattern of the vAI associated with the context-dependency at
he video phase reflects enhanced interoceptive information processing
ecessary for simulating the internal affective state of others. 

.2. The amygdala-pgACC communications in ambiguous facial 

nformation processing 

Here we report that the context-dependent individuals are character-
zed by coactivation of the amygdala and the pgACC when estimating
nother person’s pleasantness level and by increased modulatory effec-
ive connectivity from the pgACC to the amygdala. The amygdala signals
he valence of ambiguous facial expressions (e.g., surprised) associated
ith context ( Kim et al., 2004 ; Vrticka et al., 2013), and amygdala ac-

ivity could predict the valence of surprised faces without the effects
f arousal ( Kim et al., 2017 ). The coactivation of the pgACC and the
mygdala was associated with amplification of the valence of emoti-
oal faces associated with context compared to the faces alone ( Lee and
iegle, 2014 ), which supports the view that the pgACC modulates the
mygdala responses to resolve emotion conflict ( Etkin et al., 2006 ). In
ddition, Klumpp et al. (2017) reported the positive relationship be-
ween the pgACC and amygdala activity associated with the decrease
n self reports of negative feeling among social anxiety patients during
mplicit emotion regulation task. These results suggest that the commu-
ication between the pgACC and the amygdala serves a crucial role in
ontext-dependent facial emotion recognition. 

.3. The AI-pgACC communications in context-dependent facial emotion 

rocessing 

The pgACC has been extensively reported in social functions such
s tracking other people’s motivations ( Apps et al., 2016 ; Chang et al.,
013 ; Wittmann et al., 2018 ), self-referential processing ( Northoff et al.,
006 ), self-conscious emotions ( Sturm et al., 2013 ) as well as empathic
rocessing ( Xu et al., 2009 ; Wittmann et al., 2018 ; Schurz et al., 2020 ;
allon et al., 2020 ). Damage to this region impairs empathic ability
nd social awareness ( Seeley, 2008 ). Similarly, the activities of the
gACC correlate positively with the trait empathic scores among con-
enital pain insensitive patients, suggesting the pgACC involvement
n the compensatory mechanism for lack of autonomous responses for
ainful pictures ( Danziger et al., 2009 ). The pgACC-AI communica-
ion has been also implicated in interoceptive prediction ( Barrett and
immons, 2015 ). Here, we report the positive relationship between
ontext-dependency and the modulatory effective connectivity from the
AI to the pgACC. These are the two major regions containing von
conomo neurons, which are known to be specialized for rapid and long-
ange neural communications with the brainstem ( Allman et al., 2010 ;
ischer et al., 2016 ). The pgACC seems to be a part of the visceromo-
or region that generates allostatic predictions in response to incoming
ensory information, serving to minimize prediction errors arising from
iscerosensory regions such as the AI and to modulate the set points of
omeostatic reflexes ( Critchley et al., 2013 ; Sterling, 2014 ; Barrett and
immons, 2015 ; Stephan et al., 2016 ; Kleckner et al., 2017 ). Based on
hese findings, we speculate that individuals who were more context-
ependent in estimating other people’s pleasantness could be the ones
ho experienced greater mismatch between the predictions of other
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eople’s internal state generated by context information and the sen-
ory information of facial emotion processing, thereby resolving predic-
ion errors via assigning appropriate pleasantness ratings to emotionless
ctors. 

The classical notion of the basic universal emotion ( Ekman and Cor-
aro, 2011 ) has been challenged by the interoceptive predictive cod-
ng, which suggests that emotional responses are not confined within
he predefined physiological and psychological boundaries, but they are
ecollections of interoceptive prediction signals experienced from pre-
ious events constructed based on language and culture ( Barrett and
immons, 2015 ; Hoemann and Barrett, 2019 ). This predictive account
uggests that individuals do not necessarily display similar neural re-
ponses to the same affective stimuli ( Azari et al., 2020 ) and the meaning
f the affective stimuli could be only understood based on individuals’
erspective on the affective stimuli. We believe that our study is one
f the first empirical neuroimaging study representing the individual
ariability in the predictive accounts of the affective states. 

. Conclusion 

The present study investigated the individual variability in contex-
ual dependency of ambiguous facial emotion processing. Consistent
ith previous studies, people showed a large variability in context-
ependency when estimating others’ ambiguous facial expressions. The
hanges in activities of the pgACC and the amygdala were correlated
ith the individual context-dependency, and the different activity pat-

erns of the AI at the video phase reflected the spectrum of context-
ependency during the facial information processing. Importantly, the
reater the contextual dependency, the larger the effective connectivity
trength from the vAI to the pgACC. These findings provide the key neu-
al signatures of individual variability in context-dependent perception
f ambiguous facial expression. This study suggests that individual dif-
erences in context-dependent ambiguous facial information processing
rise from distinctive orchestration of multiple brain regions to simulate
he internal states of others and modulate them to generate appropriate
ehavioral responses in given contexts. 
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