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SUPPLEMENTARY METHODS 

Study 1: Capsaicin-induced tonic pain dataset (training dataset) 

Participants. Nineteen healthy and right-handed participants were included (age = 23.2 ± 

4.9 [mean ± SD], 10 female). Participants were recruited from Boulder/Denver Metro Areas. The 
institutional review board of the University of Colorado Boulder approved the study. All 
participants provided written informed consent. Preliminary eligibility of participants was 

determined through an online questionnaire. Participants with psychiatric, neurological, or 
systemic disorders and MRI contraindications were excluded. 

Experimental design. Study 1 had two condition runs; one was the capsaicin run, and 
the other was the control run. In the capsaicin run, we applied hot chili pepper sauce on 

participants’ tongue (for more details, see ‘capsaicin delivery’ above). The control run did not 
include any external stimulation. These two runs are conducted consecutively, and structural 

scan was obtained between them to minimize any remaining sensations of the preceding run. The 
order of capsaicin and control runs was counterbalanced across participants. Each run lasted for 

5 minutes 15 seconds, and participants provided ratings of pain intensity and unpleasantness 
every 45 seconds from the start of the scan (total 7 times) using a MR-compatible trackball 

device. After the scan, we asked multiple post-scan questions to participants regarding their 
thought contents during the scan. These data were not used in the current study. To minimize the 

unwanted effect of remaining painful sensation after the capsaicin run, we provided a small 
amount of liquid sucrose after the scan until the participant reported no residual pain. Graphical 

illustration of the experimental design of Study 1 is provided in Fig. 1b. 

Rating scale. The general Labeled Magnitude Scale (gLMS)1 was used for ratings. The 

anchors of the gLMS began with “Not at all (0)” to the far left of the scale, and continued to the 
right in a graded fashion with anchors of “A little bit” (0.061), “Moderately” (0.172), “Strongly” 

(0.354), and “Very strongly” (0.533), until “Most (Strongest imaginable 
sensation/unpleasantness of any kind)” (1) on the far right.  

Physiological data acquisition. Physiological responses including skin conductance 
response (SCR) and cardiac signal were obtained during the scan (Biopac systems, Goleta, CA). 

SCR was recorded using Ag/Agcl electrodes placed on the medial phalanges of the middle and 
ring fingers of the left hand. Cardiac signal was recorded using Photo Plethysmogram (PPG) 

amplifier placed on the big toe. Both SCR and PPG data were sampled at 2000Hz. We note that 
physiological data of five participants were discarded, because they were not recorded during 

scan or the data quality was too bad. 

Physiological data analysis. For PPG data, inter-beat intervals (IBI) were calculated by 

finding peaks and getting distance between them. IBI data and SCR data were low-pass filtered 
(5 Hz) and down-sampled (25 Hz). Heart rate (HR) was calculated by taking the inverse of IBI 

data (1/IBI). For comparison with pain rating, we divided the HR and SCR timeseries into 7 bins 
that corresponded to each intermittent self-report of pain rating (total of 7 ratings). Each bin was 

defined as an interval between the report of one pain rating and that of next (immediately after) 
pain rating. Because the last pain rating had no ‘next’ report of pain by its definition, the final bin 

ended at the end of the scan. Each bin of HR and SCR signals were then averaged.  

fMRI data acquisition. Whole-brain fMRI data were acquired on a 3T Siemens TrioTim 

scanner at the University of Colorado Boulder. High-resolution T1-weighted structural images 
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were acquired. Functional EPI images were acquired with TR = 460 ms, TE = 29.0 ms, 

multiband acceleration factor = 8, field of view = 248 mm, 82×82 matrix, 3×3×3 mm3 voxels, 56 
interleaved slices, number of volumes = 685. Stimulus presentation and behavioral data 

acquisition were controlled using E-Prime software (PST Inc.). 

fMRI data analysis. Structural and functional MRI data were preprocessed using an 

automated preprocessing pipeline, which was based on AFNI, FSL, and SPM5 and developed at 
Mind Research Network (MRN)2. In the pipeline, structural T1-weighted images were co-

registered to the functional image and normalized to MNI, and functional EPI images were 
distortion-corrected, motion-corrected (realigned), normalized to MNI using T1 images with the 

interpolation to 3×3×3 mm3 voxels, and smoothed with a 6 mm FWHM Gaussian kernel. After 
the automated preprocessing, 20 initial volumes of fMRI data were removed in order to allow for 

image intensity stabilization. Then, we concatenated the fMRI data across the capsaicin and 
control runs before further preprocessing (e.g., nuisance regression). We did the concatenation in 

order to preserve the difference between the capsaicin and control conditions within an 
individual because we used the combined data across two conditions for model building given 

that the capsaicin run of Study 1 was not long enough to capture the rise and fall of the painful 
sensation (for this reason, we used 20-minute scans in Study 3). Conducting further 

preprocessing separately on each run could obscure the differences between two conditions. 
After the concatenation, we regressed out the nuisance covariates, which included (i) image-

intensity outliers (i.e., “spikes”), (ii) finger movement period indicators related with report of 
pain rating, and (iii) 24 head motion parameters (6 movement parameters including x, y, z, roll, 

pitch, and yaw, their mean- centered squares, their derivatives, and squared derivative)3. Outliers 
were identified based on mean signal intensity, mahalanobis distances, and the root mean square 

of successive difference across volumes. Images that exceeds 3 standard deviation from the 
global mean were considered as outliers. For signal intensity and mahalanobis distances, the 

images that exceeded 10 mean absolute deviations (MADs) based on moving averages with full 
width at half maximum (FWHM) 20 images kernel were additionally identified as outliers. Each 

time-point identified as outliers by either outlier detection method was included as nuisance 

covariates. After the nuisance regression, intensity value outside of the median ± 5 standard 
deviation of all intensity values (across all the voxels and time points) were winsorized, and low 
pass filter with 0.1 Hz was applied. 

 

Study 2: Capsaicin-induced tonic pain dataset (validation dataset) 

Participants. Forty-two healthy and right-handed participants were included (age = 24.4 

± 6.0 [mean ± SD], 14 female) after excluding 7 participants who provided avoidance rating 

scores higher in the control run than the capsaicin run from further analysis. Other information is 
same with Study 1.  

Experimental design. Study 2 had three conditions; (1) capsaicin, (2) bitter taste 
(quinine), and (3) control condition runs. For the capsaicin and bitter taste delivery procedure, 

please see ‘capsaicin delivery’ and ‘aversive tastant delivery’ above. The three runs and 
structural scan were conducted consecutively, the order of which was counterbalanced across 

participants. To collect ratings on a common scale across different stimulus modalities, we used 
an avoidance rating scale instead of pain intensity or unpleasantness. The question prompt was 

“How much do you want to avoid this experience in the future?” Each run lasted for 5 minutes 
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10 seconds, and participants provided ratings of avoidance every 30 seconds starting from 10 

seconds after the scan started (total 10 times) using a trackball. Other procedures were same to 
Study 1 including post-run questions and delivering liquid sucrose between runs.  

Rating scale. The general Labeled Magnitude Scale (gLMS)1 was used for the avoidance 
rating. The anchors of the gLMS began with “Not at all (0)” to the far left of the scale, and 

continued to the right in a graded fashion with anchors of “A little bit” (0.061), “Moderately” 
(0.172), “Strongly” (0.354), and “Very strongly” (0.533), until “Most (I never want to experience 

this again in my life)” (1) on the far right.  

fMRI data acquisition. Whole-brain fMRI data were acquired on a 3T Siemens Prisma 

scanner at the University of Colorado Boulder. High-resolution T1-weighted structural images 
were acquired. Functional EPI images were acquired with TR = 460 ms, TE = 27.2 ms, 

multiband acceleration factor = 8, field of view = 220 mm, 82×82 matrix, 2.7×2.7×2.7 mm3 
voxels, 56 interleaved slices, number of volumes = 676. Stimulus presentation and behavioral 

data acquisition were controlled using Matlab (Mathworks) and Psychtoolbox 
(http://psychtoolbox.org/). 

fMRI data analysis. Preprocessing was done with the same pipeline as Study 1. 

 

Study 3: Capsaicin-induced tonic pain dataset (independent test dataset) 

Participants. Forty-eight healthy, right-handed participants were included (age = 22.8 ± 

2.4 [mean ± SD], 21 female) after we excluded 4 participants who provided avoidance rating 
scores higher in the control run than the capsaicin run and one participant whose brain coverage 
of MRI was insufficient to contain the whole brain. Participants were recruited from Suwon area 

in South Korea. The institutional review board of the Sungkyunkwan University approved the 
study. Other information is same with Studies 1 and 2. 

Experimental design. Study 3 had four conditions total; (i) capsaicin, (ii) bitter taste 
(quinine), (iii) aversive odor (fermented skate), and (iv) control runs. For the capsaicin, bitter 

taste, aversive odor delivery procedure, please see ‘capsaicin delivery’, ‘aversive tastant 
delivery’, and ‘aversive odor delivery’ above. After a structural scan, the four condition runs 

were administered consecutively, the order of which was counterbalanced across participants. 
Each run lasted for 20 minutes, and participants provided avoidance ratings continuously 

throughout the run using a trackball. We designed the experiment to have long scans to capture 
the full rise and fall of each sensation. To prevent participants falling asleep and help maintain a 

certain level of alertness during the scan, we used an intermittent simple response task, in which 
the color of the rating bar on the screen was changed from orange to red for 1 second every 

minute with some jitter, and the participants had to respond to the color change by clicking the 
button of the trackball device. Other procedures were same to Study 2 including post-run 

questions and delivering liquid sucrose if participants reported that there was a remaining taste 
sensation between runs. 

Physiological data acquisition. Physiological responses including cardiac and 
respiratory signals were obtained during the scan (Biopac systems, Goleta, CA). The cardiac 

signal was recorded using Electrocardiogram (ECG) amplifiers placed on the right clavicle and 
left lower rib area. The respiratory signal was recorded using a pneumatic belt placed around the 
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chest. We note that physiological data of ten participants had to be discarded (remaining 38 

participants) because of their poor data quality. The sampling rate was 5000 Hz for all 
physiological data. 

Physiological data analysis. To reduce MR-related artifact from physiological data, 
ECG data was preprocessed with a band-stop filter that removes fundamental and harmonics of 

MRI sampling frequency (here, multiplies of 1/TR = 2.1739 Hz) and low-pass filter (< 5 Hz). R 
peaks were detected in this denoised ECG signal using the PhysIO toolbox (obtained from 

https://github.com/translationalneuromodeling/tapas/tree/master/PhysIO). Inter-beat interval was 
calculated by getting distance between the R peaks.  

Respiratory data was processed with similar pipeline of a previous study4. First, outliers 
in respiratory traces were corrected using a moving median filter (“filloutliers.m” function in 

Matlab). Then, the traces were smoothed with Savitzky-Golay filter using a 1-sec time window 
(“smoothdata.m” function in Matlab) and z-scored. We then detected respiratory peaks in the 

smoothed signal using “findpeak.m” function in Matlab (minimum peak distance = 2 seconds 
and minimum peak prominence = 0.01 seconds), and the respiratory interval was calculated by 

getting distance between the peaks. The inter-beat-interval and respiratory interval data were 
downsampled to 25 Hz and converted to heart rate (HR) and respiratory rate (RR), respectively. 

The HR and RR data were divided into pre-defined numbers of time-bins (5 or 40 bins), and the 
data for each time-bin was averaged. 

fMRI data acquisition. Whole-brain fMRI data were acquired on a 3T Siemens Prisma 
scanner at the Sungkyunkwan University. The scanning parameters were same with Study 2 

except for the number of volumes, which was 2608.  

fMRI data analysis. Preprocessing was done similarly as in Studies 1 and 2, but there 

were also some differences: First, we did not use the automated MRN preprocessing pipeline, but 
we manually followed the same preprocessing steps using the same tools. Second, we conducted 

the additional preprocessing including nuisance regression separately for each run because each 
run was long enough to capture the baseline brain activity. Third, we included the timepoints for 

the intermittent simple response task as nuisance covariates. Fourth, we removed 22 initial 
volumes, instead of 20 volumes, to allow enough time for image intensity stabilization. 

 

Study 4: Clinical back pain dataset (subacute and chronic back pain) 

Participants. Study 4 data were obtained from the OpenPain Project (OPP) database 
(http://www.openpain.org/). The OPP project (Principal Investigator: A. Vania Apkarian, Ph.D. 

at Northwestern University) is supported by the National Institute of Neurological Disorders and 
Stroke (NINDS) and National Institute of Drug Abuse (NIDA). This dataset consisted of 

longitudinal fMRI study of clinical back pain patients, including 70 subacute back pain (SBP) 

patients (age = 43.3 ± 10.6 [mean ± SD], 34 female) and 25 chronic back pain (CBP) patients 

(age = 44.6 ± 7.9 [mean ± SD], 9 female). All the SBP patients included in this study reported 

their overall pain level higher than 40 based on visual analogue scale (VAS; 0: no pain, 100: 
maximum imaginable pain) and their duration of back pain was between 4 to 16 weeks, which 

had not occurred in the last 12 months before the onset of current pain symptom. Participants 
with psychiatric, neurological, systemic disorders, or high depression scores (>19 scores based 
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on Beck’s Depression Inventory [BDI])5 were excluded. For more detailed information about the 

study, please see ref. 6. 

Experimental design. Patients were followed longitudinally with fMRI scanning for 1 to 

3 years. There were two types of experimental conditions in this study. The first one was the 
“spontaneous pain rating” condition, in which the participants provided their moment-by-

moment ratings of spontaneous pain by spanning their finger. The second one was the “resting 
state” condition, in which participants kept their eyes open during the scan without any other 

tasks. Each run lasted for 10 minutes and 10 seconds, and the overall levels of pain were 
collected using visual analog scale (VAS) within an hour before the start of the fMRI scan. 

fMRI data acquisition. Whole-brain fMRI data were acquired on a 3T Siemens TrioTim 
scanner. High-resolution T1-weighted structural images were acquired. Functional EPI images 

were acquired with TR = 2500 ms, TE = 30 ms, 64×64 matrix, 3.4×3.4×3.0 mm3 voxels, 36 
interleaved slices, number of volumes = 244. For more details about the scanning parameters, 

please see ref. 6. 

fMRI data analysis. Resting state fMRI data of the OPP database were preprocessed 

using the Fusion of Neuroimaging Preprocessing (FuNP) pipeline that integrated AFNI and FSL 
software7. The first 4 volumes were removed to allow for image intensity stabilization. Head 

motion and slice timing were corrected and intensity normalization of the 4D volumes were 
applied. The nuisance variables of head motion, white matter, cerebrospinal fluid, cardiac 

pulsation, and arterial and large vein related contributions were removed using FMRIB’s ICA-
based X-noiseifier (ICA-FIX) software. The fMRI data were registered onto the preprocessed 

T1-weighted data and subsequently onto the Montreal Neurological Institute (MNI) 3 mm3 
standard space. The low-pass filter with 0.1 Hz and spatial smoothing with full width at half 

maximum (FWHM) of 4 mm were applied. 

 

Study 5: Clinical back pain dataset (chronic back pain) 

Participants. Study 5 was also from the OPP database. This dataset includes fMRI 

resting state data of CBP patients and healthy aged-matched controls from two independent sites 

(Japan and UK). The Japan dataset consisted of 24 CBP patients (age = 46.3 ± 11.3 [mean ± SD], 

12 female) and 39 healthy control participants (age = 39.1 ± 13.5 [mean ± SD], 14 female), and 

the UK dataset consisted of 17 CBP patients (age = 44.0 ± 11.4 [mean ± SD], 12 female) and 17 

healthy control participants (age = 44.4 ± 11.8 [mean ± SD], 11 female). All the CBP patients 
included in this study reported duration of back pain more than 12 months. Participants with 

psychiatric, neurological, or systemic disorders and MRI contraindications were excluded. For 
more detailed information about the study, please see ref. 8. 

Experimental design. Resting state fMRI scan was conducted, where participants kept 
their eyes open during the scan without any other tasks. Each run lasted for 9 minutes and 45 

seconds. 

fMRI data acquisition. Whole-brain fMRI data were acquired on a 3T Siemens TrioTim 

scanner at the CiNet (Osaka, Japan) or Addenbrooke’s hospital (Cambridge, UK). High-
resolution T1-weighted structural images were acquired. For the Japan dataset, functional EPI 

images were acquired with TR = 2500 ms, TE = 30 ms, field of view = 212 mm, 64×64 matrix, 
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3.3×3.3×4.0 mm3 voxels, 41 ascending-ordered slices, number of volumes = 234; For the UK 

dataset, functional EPI images were acquired with TR = 2000 ms, TE = 30 ms, field of view = 
192 mm, 64×64 matrix, 3.0×3.0×3.8 mm3 voxels, 32 interleaved slices, number of volumes = 

295. For more details, please see ref. 8. 

fMRI data analysis. Preprocessing was done with the same pipeline as Study 4. 

 

Study 6: Heat-induced phasic pain dataset 

Participants. Thirty-three healthy and right-handed participants were included (age = 

27.9 ± 9.0 [mean ± SD], 22 female). Participants were recruited from New York City. The 

institutional review board of the Columbia University approved the study, and all participants 
provided written informed consent. Preliminary eligibility of participants was determined 

through an online questionnaire. Participants with psychiatric, neurological, or systemic 
disorders and MRI contraindications were excluded. For more detailed description of the 

inclusion/exclusion criteria, please see ref. 9. 

Experimental design. We used thermal stimulation to induce the experimental phasic 

pain (EPP) in participants. The thermal stimulation was delivered to the volar surface of left 
inner forearm. Each heat stimulation lasted 12.5 seconds, which consisted of 3 seconds of ramp-

up, 7.5 seconds of plateau, and 2 seconds of ramp-down. A total of 6 levels of temperature 

(44.3°C- 49.3°C, 1°C increment) was used for stimulation. After heat stimulation, participants 
provided ratings of (i) whether the stimulus was painful or not, and (ii) how much intense the 

stimulus was using VAS. Intensity ratings for non-painful trials were coded as 0-100, and ratings 
for painful trials were coded as 100-200. The experiment included 9 runs, of which 7 runs (run 1, 

2, 4, 5, 6, 8, and 9) were ‘passive experience’ runs, and the other 2 runs (run 3, 7) were 
‘regulation’ runs. In this study, we only used the data from the ‘passive experience’ runs, in 

which participants were asked to passively experience the painful sensation without any 
psychological effort to increase or decrease pain. More details about the experimental design are 

available at ref. 9.  

fMRI data acquisition. Whole-brain fMRI data were acquired on a 3T Philips Achieva 

TX scanner at the University of Colorado Boulder. High-resolution T1-weighted structural 
images were acquired. Functional EPI images were acquired with TR = 2000 ms, TE = 20 ms, 

parallel imaging, SENSE factor = 1.5, field of view = 224 mm, 64×64 matrix, 3×3×3 mm3 
voxels, 42 interleaved slices, number of volumes = 213 (for ‘passive experience’ runs) or 195 

(for ‘regulation’ runs). Stimulus presentation and behavioral data acquisition were controlled 
using E-Prime software (PST Inc.). For more details about the parameters, please see ref. 9.  

fMRI data analysis. Preprocessing was done with the same pipeline as ref. 9. Structural 
T1-weighted images were co-registered to the functional image and normalized to MNI. Four 

initial volumes of fMRI data were removed in order to allow for image intensity stabilization. 
These functional EPI images were distortion-corrected, motion-corrected (realigned), normalized 

to MNI using T1 images with the interpolation to 2×2×2 mm3 voxels, and smoothed with an 8 
mm FWHM Gaussian kernel. Then, total 9 runs of preprocessed fMRI images were 

concatenated, and nuisance covariates described in the ‘First-level analysis and robust 
regression’ section of ref. 9 were removed. These nuisance covariates included (i) intercept for 

each run; (ii) linear drift across time within each run; (iii) 24 head motion parameters (6 
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movement parameters including x, y, z, roll, pitch, and yaw, their mean- centered squares, their 

derivatives, and squared derivative)3; (iv) indicator vectors for outlier time points identified 
based on their multivariate distance from the other images in the sample; (v) indicator vectors for 

the first two images in each run; (vi) signals from white matter and ventricle. Then, high pass 
filter with 1/180 Hz was applied to the images. For more detailed description about the 

preprocessing, please see ref. 9.1 

 

Supplementary Data 1: Clinical trial of analgesic treatment dataset (chronic knee pain) 

Participants. This dataset was also from the OPP database. It includes fMRI resting state 

data of 56 chronic knee osteoarthritis patients (age = 57.9 ± 7.0 [mean ± SD], 30 female). All the 
osteoarthritis patients included in this study reported their overall pain level higher than 4 of 10 

based on numerical rating scale (NRS), and their duration of pain was longer than 12 months. 
These patients met the American College of Rheumatology criteria for osteoarthritis, which was 

further confirmed by a clinician. For more details about the study, please see ref. 10. 

Experimental design. Resting state fMRI data with the clinical trial of analgesic 

treatment effects were collected. Among the 56 chronic osteoarthritis patients, 37 patients 
received placebo treatment and the other 19 patients received analgesic drug (duloxetine) 

treatment. 17 patients of the placebo-treated group were scanned 2 weeks before the treatment. 
The other 20 patients of the placebo group, and the 19 patients of the duloxetine group were 

scanned 3 months before the treatment. Each run lasted for 12 minutes and 40 seconds except for 
one patient who was scanned for 10 minutes and 10 seconds. Analgesic effect was calculated as 

a percentage of decrease in the overall levels of pain (measured with VAS) from baseline to the 
end of the treatment period. Patients with analgesic effects higher than 20% were classified as 

‘responder’, and the others were classified as ‘non-responder’. 

fMRI data acquisition. Whole-brain fMRI data were acquired on a 3T Siemens TrioTim 

scanner. High-resolution T1-weighted structural images were acquired. Functional EPI images 
were acquired with TR = 2500 ms, TE = 30 ms, 64×64 matrix, 3.4×3.4×3.0 mm3 voxels, 40 

interleaved slices, number of volumes = 300. For more details, please see ref. 10. 

fMRI data analysis. Preprocessing was done with the same pipeline as Study 4. 

 

Supplementary Data 2: Capsaicin-induced tonic pain dataset with gustometer 

Participants. Fifty-eight healthy and right-handed participants were included (age = 22.8 

± 2.8 [mean ± SD], 27 female). Participants were recruited from Suwon area in South Korea. As 
the same with Study 3, the institutional review board of the Sungkyunkwan University approved 

the study. Preliminary eligibility of participants was determined through an online questionnaire. 
Participants with psychiatric, neurological, or systemic disorders and MRI contraindications 

were excluded.  

Experimental design. Supplementary Data 2 included five experimental conditions; (i) 

capsaicin, (ii) bitter taste (quinine), (iii) sweet taste (hot cocoa), (iv) pleasant touch (brush), and 
(v) control runs. In the current study, we only used data from three conditions, capsaicin, bitter 

taste, and control. The onsets for the capsaicin and quinine fluid were 1.5 and 7 minutes after the 
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beginning of the scan, and the stimulus duration for each delivery was 1.5 minutes (Extended 

Data Fig. 10a). When there was no fluid delivery, water was delivered. Participants were asked 
to continuously rate their subjective feelings of unpleasantness for the whole run on the general 

Labeled Magnitude Scale1 adopted for pleasantness and unpleasantness rating using an MR-
compatible trackball device. After each run, we rinse out participants’ mouth using water to 

remove any residual fluid. For control run, we delivered water throughout the run.  

fMRI data acquisition. Whole-brain fMRI data were acquired on a 3T Siemens Prisma 

scanner at the Sungkyunkwan University. The scanning parameters were same with Study 2 
except for the number of volumes, which was 1893 (14.5 minute scan for each run).  

fMRI data analysis. Preprocessing was done using the same pipeline as Study 3, except 
for the following differences. First, 18 initial volumes (instead of 22 volumes) were discarded for 

image intensity stabilization. Second, the functional data was smoothed with a 5 mm FWHM 
Gaussian kernel (instead of 6 mm FWHM kernel). Third, in addition to 24 head-motion 

parameters and image-intensity outliers, 5 principal components of white matter and 
cerebrospinal fluid signals11 and linear drift were regressed out. 

 

Stimuli and delivery procedure  

Capsaicin delivery (Studies 1-3). To induce tonic pain, we applied hot sauce on 
participants’ tongue in Studies 1-3. We used hot sauce (a food ingredient) to induce orofacial 

tonic pain with a minimal risk. In Studies 1 and 2, we used the Habanero Pepper Sauce from 
Tabasco®, and in Study 3, we used the Capsaicin Hot Sauce from Jinmifood, Inc. To deliver the 

hot sauce in the scanner, we dropped a small amount of hot sauce (0.1 ml) onto a filter paper (2 
cm * 6.5 cm, rectangle form). We spread the hot sauce in a circle (diameter = 1 cm) on the upper 

1/3 of the filter paper. While participants were lying in the scanner, an experimenter handed the 
filter paper to the participants. The participants carefully placed the capsaicin side of the paper 

on their tongue (the participants had an opportunity to practice this procedure with a paper 
without capsaicin inside of the scanner), and closed their mouth. After 30 seconds, we asked the 

participants to open their mouth and put the paper on the towel on their chest. Participants kept 
opening their mouth and breathing only through the mouth for one minute to prevent the 

capsaicin liquid from flowing. In this way, the liquid dries up, and the capsaicin ends up being 
located in a specific area of the tongue. After one minute, we asked the participants to close their 

mouth (and keep closing their mouth), while starting the scan. The participants provided their 
ratings using a MR-compatible trackball device when a rating scale appeared on the screen. The 

motivation of using this particular delivery procedure includes 1) to reduce the risk of coughing 
in the scanner, 2) to keep the pain within a tolerable range, while maximizing the pain intensity, 

and 3) to make the delivery method simple and easy (without additional equipment).  

Aversive tastant delivery (Studies 2-3). To induce aversive, but not painful, oral 

sensation for the specificity testing of the tonic pain model, we used quinine that has a bitter taste 
in Studies 2-3. A small amount of quinine sulfate (50 mg) was dissolved in distilled water 

(0.1ml), which was sufficient to induce aversive and bitter taste. The quinine solution was 
subsequently dropped onto a filter paper, and the rest of this procedure was same as the 

‘Capsaicin delivery’ above. 
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Aversive odor delivery (Study 3). We used fermented skate as an additional aversive 

stimulus for specificity testing of the tonic pain model in Study 3. The fermented skate (Hong-
eo) is a food in South Korea famous for its bad smell. We chose to use the fermented skate 

among many other options (including multiple strong-smell cheese, Maroilles Fauquet, Bons 
Mayennais Lingot, Gorgonzolla Piccante) based on aversiveness ratings in a pilot study (n = 15). 

We attached a slice of fermented skate, covered with a filter paper, to the interior nasal part of a 
mask. The mask was designed to cover the nose and the mouth. For the delivery, we first moved 

the bed out of the scanner and unlocked and lifted the head coil. While the participants breathing 
through their mouth, we placed the mask to cover participant’s nose and mouth. After the head 

coil was installed again, the participants were re-entered into the scanner. We asked the 
participants to start breathing through the nose after we started the scanning. We instructed the 

participants to breathe only through the nose until the end of the scan. 

Capsaicin delivery with an MR-compatible gustometer system (Supplementary Data 
2). In this study, we used a newly built MR-compatible gustometer system to induce orofacial 
tonic pain multiple times within a run. The gustometer system delivers fluid through an MR-

compatible mouthpiece, the shape of which was adjusted before the scan to minimize discomfort 
during the scan. The same capsaicin hot sauce (Jinmifood, Inc.) as in Study 3 was used, but this 

time, we used a 20% concentration of capsaicin fluid by dissolving 20 ml of the capsaicin hot 
sauce in 80 ml of water because a liquid with high viscosity cannot be used with the gustometer 

system. The onsets for the capsaicin fluid were 1.5 and 7 minutes after the beginning of the scan, 
and the stimulus duration for each delivery was 1.5 minutes (Extended Data Fig. 10a). To keep 

the pain intensity within tolerable limits, the fluid delivery speed was very slow so that the 
amount of capsaicin fluid per one delivery was less than 1 ml. When there was no capsaicin 

delivery, water kept flowing out. During the scan, the delivered fluid was removed using a 
suction pump to prevent participants from swallowing fluid. The computer-controlled 8-channel 

fluid delivery system, OctaflowⅡ (ALA Scientific Instruments Inc., Westbury, NY), controlled 

the whole process of fluid delivery.  

Quinine delivery with an MR-compatible gustometer system (Supplementary Data 
2). To deliver the quinine using the gustometer, we used the 20mM quinine solution. Then, same 

procedure as above was used for delivering the quinine solution to participants’ mouth. 

 

Functional connectivity processing details for each study 

Capsaicin tonic pain datasets (Studies 1-3). Both ‘overall’ and ‘time-binned’ functional 

connectivity features were used for Studies 1-3 (n = 109). Temporal binning of Study 1 and 2 
data was done based on the time interval between pain ratings. The last time bin was defined as a 

period between the last pain rating and the end of the scan. The temporal binning of Study 3 data 
was done by dividing the BOLD timeseries into pre-defined numbers of bins (5 or 10 bins), 

because the continuous pain rating was used in Study 3.  

Clinical pain datasets (Studies 4-5 and Supplementary Data 1). Only the ‘overall’ 

functional connectivity features were used for Studies 4-5 and Supplementary Data 1 (n = 248). 
In study 4, we averaged all the connectivity matrices of multiple longitudinal scans for each task 

type (‘spontaneous pain rating’ and “resting state”) and for each patient, because our main goal 
here was to predict the individual differences in overall pain severity. 
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Heat-induced phasic pain dataset (Study 6). Only the ‘time-binned’ functional 

connectivity was used for Study 6 data (n = 33). Given that Study 6 used the event-related 
experimental design, we calculated functional connectivity patterns for each trial, which served 

as a time bin. We defined a period of BOLD signal between the 5 seconds before the start of pain 
stimulation and the 4.5 seconds after the end of pain stimulation, which was total of 22 seconds. 

Because there were 77 trials in the passive experience condition, the number of time bins we 
used here was 77 per participant. Functional connectivity was calculated by taking Pearson’s 

correlation or averaging dynamic correlations using DCC for each time bin data. 

Capsaicin tonic pain dataset with gustometer (Supplementary Data 2). The ‘time-

binned’ functional connectivity features were used for the Supplementary Data 2 (n = 58). The 
initial 30 seconds of fMRI data were excluded because they were too noisy. Given that there 

were two stimulation period within a run (1.5 and 7 minutes from the start of the scan), we used 
1 minute data (131 TRs) to construct the first time-bin and 1.8 minute data (239 TRs) to 

construct the following 7 time-bins, which yielded a total of 8 time-bins. Based on this time-
binning scheme, the first bin (0.5-1.5 minutes) corresponded to the baseline period without 

stimulation, and the second (1.5-3.3 minutes) and fifth (7-8.8 minutes) time-bins corresponded to 
the first and second stimulation periods. We discarded the last 6 TRs of the scan, to ensure that 

all the time-bins had same length except for the first time-bin.  
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SUPPLEMENTARY RESULTS 

Behavioral and physiological results (Extended Data Fig. 1) 

In Study 1, we scanned 19 participants with and without capsaicin stimulation 

(“Capsaicin” and “Control” conditions), each for 5.25 minutes. Capsaicin is a major ingredient of 
hot chili pepper and activates the transient receptor potential vanilloid 1 (TRPV1) channel, which 

is involved in the transmission of nociceptive signals12. We applied capsaicin-rich hot sauce on 
participants’ tongues using a filter paper before the fMRI scan started. During the scans, we 

asked participants to report pain intensity and unpleasantness ratings on a modified version of the 
general Labeled Magnitude Scale (gLMS) every 45 seconds1. We obtained structural scans 

between the runs to minimize any remaining sensations, and also provided liquid sucrose until 
the participant reported no remaining painful sensations on the tongue. The order of capsaicin 

and control condition was counterbalanced across participants to avoid any confounding order 
effects.  

Behavioral results showed that pain intensity and unpleasantness ratings during the 
capsaicin condition were significantly higher than those during the control condition for all time-

points, for pain intensity ratings, "#  = 0.10 ± 0.01 (mean ± standard errors of the mean), z = 3.84, 

P = 0.0001; for unpleasantness ratings, "#  = 0.07 ± 0.01, z = 3.61, P = 0.0003, multi-level general 
linear model with bootstrap tests (10,000 iterations), gender and the order of experimental 

conditions were modeled as covariates (Extended Data Fig. 1a). This indicates that the capsaicin 
administration successfully induced tonic pain in participants. We also observed elevated 

autonomic responses in the capsaicin condition for all time-points, including heart rate and skin 

conductance response, for heart rate, "#  = 1.62 ± 1.24, z = 1.68, P = 0.047, one-tailed; for skin 

conductance response, "#  = 0.62 ± 0.28, z = 2.14, P = 0.033, two-tailed (Extended Data Fig. 1b). 

 

Noise analysis (Extended Data Fig. 5) 

To examine whether the ToPS performance was influenced by confounding variables 
such as head motion13 and physiological noises14, we conducted multiple noise analyses.  

First, we compared the mean framewise displacement (FD)13, heart rate (HR), and 
respiratory rate (RR) between the capsaicin versus control conditions with the primary 

independent test dataset (Study 3; Extended Data Fig. 5a). The mean FD and HR were 
significantly higher, and the RR was lower in the capsaicin condition compared to the control 

condition (FD: t47 = 3.60, P = 0.0008; HR: t37 = 5.99, P = 6.57 × 10-7; RR: t37 = -2.56, P = 0.015, 
paired t-test), suggesting that while participants were experiencing tonic pain, motion and heart 

rate was increased, but breathing was slowed. Note that we needed to exclude 10 participants’ 
data due to technical issues with physiological data acquisition. 

We then used a set of 36 nuisance variables to predict ToPS model scores. As shown in 
Extended Data Fig. 5b, the model included 24 head movement-related predictors, 10 components 

from CSF and white matter (WM), heart rate, and respiration rate. This creates a nuisance model 
optimized to predict ToPS. Low predictive accuracy would constitute evidence that the ToPS 

model output is independent from nuisance variables. Some relationship between biomarkers 
designed to track pain intensity and physiological responses is expected, as physiological 

responses are also known to track pain intensity15. However, the critical questions are (1) 
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whether physiological responses or other nuisance covariates have large enough effects to 

explain the relationship between ToPS and pain, and (2) whether the ToPS predicts pain 
controlling for the nuisance covariates. The analyses below demonstrate that the answers to these 

questions are no and yes, respectively.  

As shown in Extended Data Fig. 5b, for the capsaicin condition, the nuisance regressors 

predicted ToPS model scores with a significant but very small effect: mean prediction-outcome r 
= 0.054, P = 0.047, and for the control condition, mean r = 0.046, P = 0.074, n = 38, one-sample 

t-test. Movement estimates and WM+CSF components alone did not have a significant 
relationship with the ToPS. This result indicates that physiological variables have a systematic 

relationship with the ToPS response, but the variance explained is on the order of 0.3%. Thus, 
the answer to question (1) above is that the nuisance covariates we tested did not have a large 

enough relationship with the ToPS to explain its relationship with pain. 

The second question we tested is whether the ToPS response can explain tonic pain 

intensity above and beyond (i.e., after controlling for) these physiological variables. Extended 
Data Fig. 5c shows the results from a multi-level general linear model (GLM) analysis, in which 

we predicted ratings with the ToPS response, head motion (FD), mean WM and CSF signals, and 
physiology variables including HR and RR (n = 38). The results showed that the ToPS response 

was a significant predictor of pain ratings above and beyond other variables ("#!"#$ = 0.06 ± 0.02 

[mean ± SEM], z = 5.62, P = 1.86 × 10-8, multi-level GLM with bootstrap tests, 10,000 
iterations). The other nuisance and physiological variables did not significantly predict tonic pain 

ratings after controlling for the ToPS response ("#%& = 0.02 ± 0.02, z = 1.20, P = 0.231; "#'( = 

0.01 ± 0.01, z = 1.46, P = 0.145; "#)$% = -0.01 ± 0.01, z = -1.10, P = 0.270; "#*+ = 0.03 ± 0.02, z = 

1.10, P = 0.270; "#++ = -0.01 ± 0.01, z = -1.10, P = 0.272).  

Overall, these results suggest that ToPS captures unique variance in tonic pain above and 
beyond the nuisance and physiology variables. 

 

Robustness to a different preprocessing pipeline 

To examine whether the model performance was robust to different preprocessing 
pipelines, we tested our tonic pain model on the same Study 3 data, but with a different 

preprocessing pipeline. The new preprocessing pipeline was similar to the Human Connectome 
Project (HCP) pipeline16 and was based on AFNI, FSL, and Freesurfer. For structural T1-

weighted images, magnetic field bias was corrected and non-brain tissues were removed using 
Freesurfer. Then, the images were normalized to MNI using FSL. For functional EPI images, 

initial volumes (22 images) of fMRI images were removed to allow for image intensity 
stabilization. Then, the images were motion-corrected using AFNI and distortion-corrected using 

FSL. These EPI images were co-registered to T1-weighted images using boundary-based 
registration (BBR) technique17, which used FSL for first registration and Freesurfer for 

refinement, as in the HCP pipeline. We then removed motion-related signals of the co-registered 
EPI images using ICA-AROMA18. Additional preprocessing modules including (i) removal of 

nuisance covariates, (ii) linear de-trending, and (iii) low pass filtering with 0.1 Hz were 
combined and conducted in one step by 3dTproject function in AFNI to avoid introducing 

unwanted artifacts19. We included (i) mean BOLD signals from white matter (WM) and mean 
BOLD signals from cerebrospinal fluid (CSF)18, and (ii) time-points when intermittent arousal 
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maintenance task appeared (total of 20 times) as nuisance covariates. These de-noised EPI 

images were then normalized to MNI with the interpolation to 2×2×2 mm3 voxels and smoothed 
with a 5 mm FWHM Gaussian kernel using FSL. 

With these newly preprocessed data, the model performance was slightly decreased, but 
not substantially: The predictive performances for the within- and between-individual variations 

in tonic pain ratings were r = 0.45 and r = 0.41, respectively, P < 0.0001 for both predictions, 
bootstrap test (the original predictive performances were r = 0.51 for both cases). In addition, the 

model discriminated the capsaicin condition from the bitter taste with 67% accuracy, P = 0.029 
and from the aversive odor with 85% accuracy, P < 0.0001 (the original accuracy = 85% for both 

contrasts, P < 0.0001).  

 

The Tonic Pain Signature performed better in predicting clinical back pain than models derived 
from clinical back pain datasets themselves (Extended Data Fig. 6) 

We further compared the predictive performances of the ToPS with predictive models 
derived from the clinical pain datasets themselves, i.e., clinical SBP and CBP models (Extended 

Data Fig. 6). We used the same modeling options as in the ToPS (i.e., Brainnetome parcellations, 
DCC, and PCR), and the optimal hyper-parameters (e.g., the number of principal components) 

were determined based on the cross-validation performance. The clinical SBP model was trained 
using half of the SBP dataset in the spontaneous pain rating condition (training set, n = 35) and 

tested on the remaining half (hold-out set, n = 35). The clinical CBP model was trained using 
resting state scans from the full CBP dataset, due to its smaller sample size (n = 17, after 

excluding fMRI images that had insufficient brain coverage), and tested with cross-validation. 
For more details about the modeling, please see the Supplementary Information. 

The SBP model showed reasonable predictive performance in the training set (n = 35, r = 
0.59, P = 0.0002, leave-one-subject-out [LOSO] cross-validation). However, when the model 

was tested onto the hold-out set (n = 35), its performance became worse (r = 0.36, P = 0.032) 
than the predictive performance of the ToPS. Even if the ToPS was tested onto the same hold-out 

data for a direct comparison, the ToPS performance was still better (r = 0.48, P = 0.003) than the 
SBP model, though the difference was not statistically significant, z = 0.78, P = 0.433. The CBP 

model failed to show significant predictive performance in the training dataset (n = 17, r = -0.28, 
P = 0.269, LOSO cross-validation). When we tested the ToPS on the same training data for a 

direct comparison, the ToPS performance was also better (r = 0.51, P = 0.037) than the CBP 
model, and the difference was statistically significant, z = 2.25, P = 0.024.  

Thus, the tonic pain model outperforms the models trained on their own clinical pain 
datasets. These counterintuitive results may be due to the heterogeneous and noisy nature of 

clinical pain data, highlighting the importance of developing good experimental models, in more 
tightly controlled conditions, that can serve as a proxy for clinical conditions.  

 

Ventral striatum seed-based connectivity analysis 

In Fig. 5, we found that the functional connectivity between the dorsomedial prefrontal 
cortex (dmPFC) and ventral striatum plays an important role in tracking tonic pain intensity. 

Given that the ventral striatum and its connections to different medial prefrontal regions have 
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been implicated in multiple aspects of pain, including pain relief-related learning20-22, cognitive 

self-regulation9, transition to chronic pain23, reduced motivation in chronic pain24 and so on, we 
further examined their functional roles in tonic pain using seed-based connectivity analysis with 

Study 1 data (n = 19). More specifically, using the bilateral ventral striatum ROIs from the ToPS 
model (MNI center coordinates: left [-18, 4, -8] and right [14, 8, -8]) as a seed, we calculated the 

whole-brain seed-based functional connectivity map for each time bin. Similar to our main 
analysis, 7 time-bins were used.  

We first conducted the univariate regression analysis, in which we regressed the time-
binned connectivity maps (voxel-wise) on tonic pain intensity ratings across capsaicin and 

control conditions, and performed the second-level t-tests on the beta maps, treating participants 
as a random effect. As shown in Extended Data Fig. 8b, the univariate analysis results 

thresholded at q < 0.05 (false discovery rate-corrected) showed that the lateral and dorsal medial 
prefrontal cortices—including dorsolateral, ventrolateral, and dorsomedial prefrontal cortex, the 

dorsal part of the ventromedial prefrontal cortex, supplementary motor area—and anterior insula 
have positive coefficients, meaning that connectivity with the VS is positively associated with 

tonic pain. In addition, some basal ganglia regions, such as putamen and caudate head, right 
dorsal posterior insula, and periaqueductal gray (PAG) showed positive coefficients. Conversely, 

posterior and ventromedial cortical areas showed negative coefficients, including medial and 
mid-lateral orbitofrontal cortex, S2, and multiple temporal cortex regions. Some brainstem 

regions, such as pons, also showed negative coefficients. 

We next examined whether this pattern was also observed in the multivariate analysis 

(Extended Data Fig. 8c), in which we used the principal component regression (PCR) with a 
reduced number of principal components to predict pain intensity ratings based on ventral 

striatum seed-based connectivity across capsaicin and control condition. The number of principal 
components was selected based on cross-validated within-individual predictive performance 

(#PC = 45; mean prediction-outcome r = 0.25, P = 0.002, bootstrap test). To identify important 
brain regions, we conducted the bootstrap test for the PCR with 10,000 iterations. Note that this 

prediction performance may be biased given that the hyperparameter, i.e., the number of 
principal components, was optimized based on this dataset. However, because our goal here is 

the interpretation of the predictive weights, not the model development, we are presenting this 
model’s predictive weights. The multivariate analysis results showed significant weights within 

only a few brain regions (Extended Data Fig. 8c; none survived FDR correction), suggesting that 
in order to generate a robust model, we may need whole-brain connectivity data. When we 

examined the unthresholded univariate and multivariate regression weights within the 
dorsomedial and ventromedial prefrontal cortices (dmPFC and vmPFC; Extended Data Fig. 8c), 

the dmPFC had a higher proportion of positive weights than the vmPFC in both univariate and 
multivariate maps. This result corroborates the findings shown in Fig. 5 of the main manuscript, 

and is also consistent with a recent study which identified the dmPFC as a pro-pain brain region 
that makes extra-nociceptive contributions to pain perception25. 

These results suggest that there is the dorsal-to-ventral gradient of the pain predictive 
weights in the ventral striatal-medial prefrontal connectivity.  

 

Predicting drug- and placebo-induced analgesic responses to the Tonic Pain Signature 

(Supplementary Fig. 8) 
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We tested whether the ToPS could prospectively predict the analgesic responses to 

placebo pills and a verum drug (Duloxetine) in chronic knee pain patients using the baseline 
resting state fMRI data10 (Supplementary Data 1, n = 56; also available at openpain.org). As 

shown in Supplementary Fig. 8, the ToPS was predictive of the future analgesic responses to 
placebo in the placebo-responder group (n = 18, patients who experienced placebo-induced 

analgesic response > 20% from the baseline level of pain)—the correlation between the predicted 
and actual outcomes was r = 0.67, P = 0.003, one-sample t-test. Conversely, the ToPS was not 

predictive of the analgesic responses to duloxetine in the drug-responder group (n = 8, patients 
who experienced drug-induced analgesic response > 20% from the baseline level of pain) with 

the prediction-outcome correlation of r = -0.33, P = 0.424.  

To examine the importance of features for the prediction, we used a “virtual lesion 

analysis,” which demonstrated its advantage for examining feature importance of fMRI pattern-
based model in a previous study26. In the current study, virtual lesions were made by removing a 

chunk of connections between each functional network and whole brain regions. We tested the 
predictive performances of the reduced models, and calculated their decreases. A large decrease 

in the model performance indicates the virtually lesioned features (i.e., functional network) are 
important for the model prediction. We also tested statistical significance of the feature 

importance using bootstrap tests. Results (Supplementary Fig. 8) showed that the fronto-parietal 
network of the model was important for the prediction of analgesic response magnitude in the 

placebo-responder group, z = 2.74, P = 0.006, bootstrap test, suggesting that the model 
component related to top-down cognitive regulation may play an important role in predicting 

future placebo analgesia. The ToPS was not predictive of changes in knee pain ratings for the 
non-responder groups (n = 30), r = -0.13, P = 0.484.  

 

Univariate analysis (Supplementary Fig. 9) 

To identify the brain activation patterns correlated with tonic pain ratings, we conducted 
general linear model analysis using the pain intensity and unpleasantness ratings as independent 

variables (Study 1, n = 19). For the brain data, we divided the timeseries of voxel-wise fMRI 
activity into pre-defined time-bins (as described in Functional connectivity processing), averaged 

the fMRI activation data within each bin, and concatenated the data across the capsaicin and 
control runs. For each individual, we regressed binned voxel-wise fMRI activity (Y) on pain 

intensity or unpleasantness ratings (X) and performed the second-level one sample t-tests on the 
beta maps, treating participants as a random effect. The statistical maps showed weak (voxel-

wise P < .01, uncorrected), but sensible results in some expected brain regions, including 
bilateral sensory-motor regions for mouth/tongue/face, mid- to dorsal-posterior insula (dpINS), 

and secondary somatosensory/gustatory cortex27-29. 

 

Caveats of the current study  

First, the time-course of pain experience induced by our experimental stimuli is distinct 

from the typical time-course of clinical pain, which usually fluctuates over time30. Whether the 
ToPS can generalize to pain with different time-courses becomes an important consideration. 

Though this is certainly an empirical question, the major goal of this study was to model the rise 
and fall of pain within individuals, and therefore even though the exact time-course of pain 
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differs across individuals or pain conditions, we would expect our component process marker to 

track its rise and fall. To test this prediction, we additionally tested the ToPS on a recently 
collected, and previously unpublished, tonic pain dataset (Supplementary Data 2, n = 58) that 

included a different time-course of oral capsaicin pain. In this study, we used a new tastant 
delivery system (gustometer) to safely deliver capsaicin into participants’ mouths through an 

MR-compatible mouthpiece (for more details, see Supplementary Information). This new 
delivery system allows us to induce two or more distinct periods of capsaicin pain within one 

run, providing an opportunity to test the generalizability of our model to tonic pain experiences 
with a different time-course. As shown in Extended Data Fig. 10, the ToPS significantly 

predicted pain, mean r = 0.33, P = 3.32 × 10-9 in a bootstrap test. Importantly, the ToPS 
response also showed two peaks at the time of capsaicin delivery and maximal pain, providing 

evidence for the generalizability of ToPS to pain with varying temporal patterns. 

Second, in the current study, we used only one stimulus modality, oral capsaicin, but 

there are multiple different types of tonic pain stimuli, including cold water31, hypertonic 
saline32, incision33, and heat pain under hyperalgesic conditions (e.g., capsaicin)34, each of which 

has a unique perceptual quality and spatiotemporal characteristics. Future studies must examine 
whether our tonic pain model can generalize to other tonic pain modalities, and whether other 

types of tonic stimuli have reliably distinct brain correlates. A single model might not be 
sufficient to explain all aspects of pain25,35 – though we provide evidence here that the ToPS 

generalizes to chronic back pain, so it may not vary extensively across modalities. To further test 
this, we should collaboratively achieve a deeper and integrative understanding of the brain 

representations of sustained pain by (1) developing multiple tonic pain models using diverse 
tonic pain modalities, (2) examining model generalization across types of pain, and (3) 

investigating shared and distinct representations among multiple pain-predictive models. To 
promote this process, we have made the model and code freely available through 

https://github.com/cocoanlab/tops, so that it can be applied and tested on new datasets.  

Third, the ToPS showed a small, but significant, prediction performance for the bitter 

taste condition in Study 3 (prediction-outcome r = 0.21, P = 0.014, Supplementary Fig. 3 and 
Extended Data Fig. 4a). This could be because of some shared features across the capsaicin and 

bitter taste conditions. For example, unlike aversive odors, both capsaicin and bitter taste 
conditions use liquid tastants as stimuli. The combination of aversiveness and stimulus modality 

may provide some shared signal in their fMRI data. However, when we tested the ToPS on the 
new additional dataset that also included a bitter taste condition (Supplementary Data 2, n = 58), 

the ToPS response showed non-significant correlation with the bitter taste ratings, r = 0.02, P = 
0.710, while it still showed significant prediction for the tonic pain ratings (as described above; 

Extended Data Fig. 10). This new set of results provides additional evidence for the specificity of 
the ToPS.  

Fourth, diagnosing pain or replacing self-report is not the main goal of the ToPS. Rather, 
the model is designed to assess one component process, sustained pain experience, which is 

among multiple components that constitute clinical pain syndromes. If clinical pain is modeled 
as a whole, it becomes unclear what is being measured because of the multidimensional nature of 

clinical pain. The advantage of our “component process approach”35 is that we can specify which 
components are being measured by experimentally manipulating and computationally modeling 

a specific component of interest. This characteristic of our signature enables multiple potential 
clinical applications, which are described in more detail in ‘Potential clinical scenarios and 
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challenges’ section. Briefly, the potential clinical uses of the ToPS include the evaluation of 

analgesic drug effects, tracking the progress of chronic pain, multidimensional assessment and 
subtyping of patients, providing therapeutic targets, and measuring pain in non-communicative 

individuals (e.g., infants, patients under anesthesia, or individuals with impaired communication 
due to mental disabilities or dementia), among others. These map onto several categories 

identified as use cases for biomarkers by the U.S. Food and Drug Administration36 and other 
international agencies37, and as high-priority targets in recent U.S. National Institutes of Health 

initiatives37. However, clinical use of the ToPS would be premature until the model is fully 
validated, characterized, and understood in the target clinical populations to which it will be 

applied38.  

 

Potential clinical scenarios and challenges 

One of the major strengths of our newly developed brain-based biomarker, tonic pain 

signature (ToPS), is that it can assess one specific component process, sustained pain, which is 
among many components that constitute clinical pain. If clinical pain is modeled as a whole, it 

becomes unclear what is being measured because of the multidimensional nature of clinical pain. 
The advantage of our “component process approach”35 is that we can specify which component 

are being measured by experimentally manipulating and computationally modeling a specific 
component of interest. This characteristic of our signature enables multiple clinical scenarios as 

described below.  

 

1) Evaluating the effects of new treatments: One of the biggest obstacles in developing 
analgesic drugs is the complexity of processes and contexts that influence pain self-

reports. Current practice relies almost exclusively on self-report to evaluate analgesic 
drug effects, but self-report is influenced by many different pain-related processes, 

such as sensory, affective, evaluative, social, and motivational factors. It also changes 
as a function of reporting context, i.e., who is being reported to and in what setting. It 

is influenced by culture39, gender roles40, and the way people interpret scale 
anchors41. One of the major roles of biological measures is as indicators of 

pathophysiology—biological processes linked to disease. Drugs can then be assessed 
for effects on these disease-linked biological processes. In early-stage (e.g., Phase 2a) 

clinical trials, such biomarkers can be used to make early stop/go decisions42-44. If 
drugs do not affect their intended mechanistic targets, they could be considered poor 

candidates for costly Phase 3 clinical trials in which failures can be financially 
catastrophic. With the ToPS, we can assess whether a drug has a measurable 

pharmacodynamic effect on brain systems selectively linked to sustained pain, a 
primary symptom of disease. This could provide useful information for the evaluation 

of drug effects and potentially speed up the drug development cycle in clinical trials. 
The same logic applies to other treatments currently being developed to target chronic 

pain, including Transcranial Magnetic Stimulation (TMS)45,46, Transcranial Direct 
Current Stimulation (tDCS)47, and neurofeedback48,49. 
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2) Monitoring and decision-making for treatment: A related but distinct use case of 

biomarkers, called “monitoring biomarker” (by FDA BEST criteria36). Monitoring 
biomarkers can help track disease progression over time, providing information on 

when additional intervention is needed. Examples include prostate-specific antigen 
[PSA] for prostate cancer50 or carbohydrate antigen 19-9 [CA19-9] for pancreatic 

cancer51. Given that the ToPS was trained to track within-individual changes in pain 
ratings, it has a potential to serve as a monitoring biomarker for clinical pain 

conditions. The possible use cases include helping make decisions on (1) the 
prescription of high-risk analgesic drugs (e.g., opioid), (2) appropriate dosage of 

analgesic drugs, and (3) planning invasive treatments (e.g., nerve blocks, 
radiofrequency ablation, dorsal root entry zone lesioning, etc.), all of which are highly 

needed in current clinical practice. The ToPS could eventually help indicate when 
such interventions are needed and monitor outcomes to help ascertain the effects of 

treatments. 

 

3) Multidimensional profiling and subtyping of patients: The real advantage of any 
biomarker is that it can measure biological processes that we could not measure 

otherwise. If we can develop brain-based biomarkers for the component processes 
that cannot be easily assessed, these biomarkers will be able to provide useful 

information to better characterize patients’ pain symptoms. Particularly, given that 
clinical pain conditions are complex and multidimensional by nature, we envision the 

ToPS as part of a multi-modal assessment of pain. These multiple biomarkers can 
then serve as intermediate features that are altered in various combinations in 

different clinical pain conditions, allowing us to do the multidimensional assessment 
of pain based on the interpretable neurobiological components. Further, these 

component pain biomarkers could be used for brain-based subtyping (or ‘biotypes’) 
of patients with differential disease courses or treatment responses. Again, note that 

this implementation requires further research, in which we need to characterize the 
ToPS as part of a multi-modal pain assessment strategy and develop multiple brain-

based biomarkers targeting different component processes. This is a longer-term 
strategy, but could ultimately lead to new taxonomies of chronic pain conditions that 

are more in line with the pathophysiological mechanisms causing pain. 

 

4) Providing therapeutic targets: The ToPS model itself could also provide a therapeutic 
target by identifying hub regions for sustained pain. For example, brain stimulation 

techniques, including TMS and tDCS, can target key features identified by the ToPS 
(e.g., dorsal precuneus of frontoparietal network, or paracentral lobule of 

somatomotor network; Fig. 4). Similarly, real-time fMRI-based neurofeedback could 
target the ToPS as a whole, or specific sub-networks.  

 

5) Measuring pain in non-communicating individuals: Since the current gold-standard 

measure of pain is self-report, it is difficult to assess pain in patients who cannot 
verbally report their pain, such as neonates and infants, elderly, patients with locked-

in syndrome or loss of consciousness, and those with severe dementia or intellectual 
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disabilities. The ToPS can serve as a surrogate measure of pain for these populations 

to help evaluate whether the patients are in pain. Beyond pain detection, the ToPS 
could provide information on possible causes of pain (i.e., which hubs and 

subsystems are most affected in an individual), and could also be used to identify 
optimal dosage of analgesic drugs. Currently, pain pharmacodynamics is very limited 

in these populations, as it is difficult to define a dose-response curve in the absence of 
pain52-54. 

 

There will be several challenges that have to be addressed to realize the proposed 

clinical implementations. First, there could be some infrastructure issues related to technical and 
computational requirements. To help address these, we provided a user-friendly tutorial of 

testing our signature on any preprocessed datasets (https://github.com/cocoanlab/tops). In the 
future, we should be able to develop open-source software that can take raw data directly from 

the scanner to provide model predictions. This type of software development was almost 
impossible before, but recent developments in standardized data structures, preprocessing 

pipelines, and fMRI data sharing platforms, such as Brain Imaging Data Structure (BIDS55), 
fMRIPrep56, and openneuro.org57, have greatly facilitated the development of ‘turn-key’ fMRI 

solutions. In addition, like many types of technology, with sufficient scientific evidence, the 
development of turn-key solutions can become appealing to technology companies. This has 

happened with MRI as a whole, with both hardware and image acquisition sequences developed 
in research laboratories and adopted and refined by scanner manufacturers, who distributed 

stable versions on commercial scanners. Software solutions for image viewing and analysis are 
continually made available to medical personnel in this way as well. We envision this type of 

implementation for testing of signatures in the future with stable versions of analysis and 
visualization methods embedded in software.  

Second, data quality control is an important issue. Since functional connectivity is 
vulnerable to motion, great care must be taken to minimize in-scanner motion when acquiring 

fMRI data, especially from those who might have difficulty in following the instructions (e.g., 
seniors or children). Fortunately, resting-state fMRI is relatively easy to obtain clinically, and 

there is rapid advancement in standardized quality-control measures, which we integrated into 
the ToPS pipeline. These take the form of both (a) automated artifact detection and mitigation, 

and (b) thresholds for automatic rejection of poor-quality data. Given that we demonstrated that 
the ToPS could predict pain severity of chronic pain patients using resting-state fMRI data, we 

would recommend using resting-state fMRI in the clinic at this stage. 

Third, interpreting fMRI data and analysis results would be one of the biggest 

challenges to many clinicians who are not familiar with fMRI data or functional networks. 
Fortunately, our signature is designed to yield a scalar value for an estimate of sustained pain 

intensity, which is straightforward to interpret and do not require any prior knowledge about 
fMRI analysis. However, the information the ToPS can offer goes beyond a single numerical 

value; for example, the ToPS could provide brain-based explanations for individual’s pain 
through analysis methods designed to explain model decisions58. For this purpose, we will need 

additional tool developments that can provide a clinician-friendly visualization of the analyses 
designed to explain the model and its key features. 
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Lastly, one important practical issue will be the cost-benefit of the test. Given that the 

brain MR Imaging is very expensive, the expected benefits of our signature-based tests should be 
higher than the cost. However, the cost usually starts high but goes down, sometimes 

dramatically, as uptake increases (e.g., as has been the case with genetic testing). Through future 
studies, our signature needs to provide empirical evidence for its clinical utility and prove its 

benefits. 
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Supplementary Fig. 1. Behavioral data of Studies 2 and 3. To obtain rating scores on a same 
scale across different stimulus modalities, we used an avoidance rating scale (question: “how 

much do you want to avoid this experience in the future?”) in Studies 2-3. The general Labeled 
Magnitude Scale (gLMS) was used1: The anchors began with “Not at all” [0] to the far left of the 

scale, and continued to the right in a graded fashion with anchors of “A little bit” [0.061], 
“Moderately” [0.172], “Strongly” [0.354], and “Very strongly” [0.533], until “Most (I never 

want to experience this again in my life)” [1] on the far right. Solid lines represent group mean 
ratings, and shading represents within-subject standard errors of the mean (s.e.m.). We collected 

avoidance ratings intermittently (every 30 seconds) in Study 2 (a) and continuously in Study 3 
(b). 
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Supplementary Fig. 2. An overview of the Principal Component Regression (PCR). This 
figure provides a brief overview of the PCR algorithm that was used in our final model. (Top) 
Dimension reduction using PCA. After we vectorized and concatenated the functional 
connectivity data, we first reduced its dimensions using Principal Component Analysis (PCA). 

(Middle) Linear regression. Using a reduced number of principal components, we conducted 
multiple linear regression with pain ratings as a dependent variable. To choose the optimal 

number of principal components, we did a grid-search method combined with leave-one-
participant-out cross-validation. (Bottom) Model construction. We projected the beta 

coefficients obtained from linear regression onto the original space, constructing the final model 
on the original functional connectivity space. 
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Supplementary Fig. 3. Sensitivity and Specificity tests with or without control run data and 
with different numbers of time-bins (Study 3). We used the ToPS to predict the avoidance 

ratings while participants were given capsaicin (first row), bitter taste (second row), or aversive 
odor (third row). Actual versus predicted ratings (i.e., signature response) are shown in the plots. 

For the plots of first and second column, each colored line (or symbol) represents an individual 
participant’s data for across the treatment (capsaicin, quinine, or aversive odor) and control runs 

(red: higher r, yellow: lower r, blue: r < 0). For the plots of third and fourth column, each line 
represents an individual participant’s data only for the treatment (capsaicin, quinine, or aversive 

odor) run. Plots on the first and third columns were based on predictions after averaging within 
five time bins (5 bins per run), and the those on the second and fourth columns were based on 

averaging within ten time bins (10 bins per run). The exact P-values for the prediction 

performance were as follows: For capsaicin (left to right), P = 3.20 × 10-14 (5 bin), 2.73 × 10-14 

(10 bin), 6.51 × 10-6 (5 bin, capsaicin only), and 2.82 × 10-5 (10 bin, capsaicin only); For bitter 
taste, P = 0.013 (5 bin), 0.032 (10 bin), 0.053 (5 bin, capsaicin only), and 0.173 (10 bin, 
capsaicin only); For aversive odor, 0.372 (5 bin), 0.412 (10 bin), 0.156 (5 bin, capsaicin only), 

and 0.052 (10 bin, capsaicin only), two-tailed, bootstrap tests. nsnon-significant, *P < .05, ****P 
< .0001. 
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Supplementary Fig. 4. Brainnetome parcellation and functional networks. a, Glass-brain representation of Brainnetome 
parcellations used in the current study. b, To facilitate the functional interpretation of the tonic pain model, we assigned the final brain 



 
TONIC PAIN SIGNATURE   26 

 
 

parcellations (279 brain regions) to 9 functional groups, which included 7 cortical functional networks from the Buckner group59, 
subcortical regions, and brainstem/cerebellum. The assignment was made based on the number of overlapping voxels between each 
Brainnetome region and the Buckner’s functional atlas combined with manual confirmation and adjustment.  
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Supplementary Fig. 5. Comparing functional connectivity matrices between the capsaicin 
and control conditions. The correlation matrices are obtained by averaging dynamic conditional 
correlations60 across all TRs within a run and across all participants. To highlight the differences 
between two connectivity matrices, the correlation matrices were mean-centered across 
concatenated capsaicin and control conditions. P-values were based on a one-sample t-test. 
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Supplementary Fig. 6. Tonic pain “unpleasantness” model. a, Left: The predictive weights of 
the model. Right: We averaged the model weights for each network-level connection and 
displayed them with a lower triangular matrix and a circular plot. b, We thresholded the map 
retaining the top 0.1% (39 connections) based on bootstrap tests with 10,000 iterations (P < 
0.00016, false discovery rate [FDR] corrected q < 0.17, two-tailed). We show the thresholded 
map using a glass brain and circular plot. All these plots used the same scale for line color, line 
thickness, and node side to the plots for the pain intensity model in Fig. 4 to help the fair 
comparisons. Note that comparing the connectivity models between tonic pain intensity versus 
unpleasantness would also be an interesting and important future direction, but it is beyond the 
scope of the current manuscript as the study was not designed to independently manipulate 
intensity and unpleasantness. 
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Supplementary Fig. 7. Thresholded experimental phasic pain (EPP) and sub-acute back pain (SBP) models. Thresholded 
models for a, experimental phasic pain induced by heat stimulation and b, sub-acute back pain models. The top 39 (0.1%) stable 
weights were selected using on a bootstrap test with 10,000 iterations. Thresholded connections with a glass brain (left), and network-
level sum of connection weights with a circular plot (right) are shown here. We used the same color ranges and line width scales that 
were obtained from the tonic pain model (shown in Fig. 4). 
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Supplementary Fig. 8. Prospective prediction of analgesic responses to placebo and drug 
intervention. We tested the ToPS whether it could predict analgesic responses to placebo pills 
and a verum drug (Duloxetine) based on pre-treatment resting-state fMRI data in patients with 

chronic knee osteoarthritis pain (Supplementary Data 1). The data was obtained from a publicly 
available pain data repository (http://www.openpain.org/) and was previously published10. The 

ToPS response was calculated using the resting state fMRI scans 3 months before randomized-
controlled analgesic treatment. a, Predicting analgesic response magnitude in 18 patients who 

responded to placebo treatment (placebo responders). c, Predicting analgesic response magnitude 
in 8 patients who responded to duloxetine (duloxetine responders). The plot shows the 

relationship between the pre-treatment signature response versus % analgesia (the percentage of 
pain reduction compared to the baseline). Each dot represents an individual participant, and the 

line represents the least-square regression line. Note that the signature response at the baseline 
was highly predictive of analgesic responses to placebo treatment, r = 0.67, P = 0.003, two-

tailed, one sample t-test, not drug responses, r = -0.33, P = 0.424, two-tailed, one sample t-test, 
though the results are expected to be unstable because of the small sample size. b and d, Virtual-

lesion analyses for b, placebo treatment and d, duloxetine treatment. Each colored dot represents 

the decreased predictive performance (i.e., -∆ performance) after virtual lesioning of each 
network, which we defined as importance. The error bars from the center dots represent the 

standard deviation and the mean of the sampling distribution with bootstrap test. For the placebo-
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responder group, the fronto-parietal network showed the significant importance value. z = 2.74, 
P = 0.006, two-tailed, bootstrap test. nsnot significant, **P < 0.01. 
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Supplementary Fig. 9. Univariate maps of regions correlated with pain intensity and 
unpleasantness (Study 1). Brain regions that are correlated with a, pain intensity and b, pain 
unpleasantness ratings. Although the current study did not use an experimental design optimized 

to examine the activation patterns correlated with pain ratings (e.g., event structure, duration, 
baseline, etc.), we conducted the voxel-wise general linear model (GLM) analysis for a sanity 

check. For each individual, we regressed voxel-wise fMRI activity averaged over the period 
between pain ratings (Y) on pain intensity or unpleasantness ratings (X), concatenating across 

the capsaicin and control runs. Using the beta maps from the first-level GLM analysis, we 
performed one sample t-tests, treating participant as a random effect. dpINS, dorsal posterior 

insula; S2, secondary somatosensory cortex. 
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Supplementary Table 1. Predictive performance of the tonic pain signature (pain intensity model) across Studies 1-3 
 

Datasets 

Prediction-outcome correlation   Forced-choice classificationc 

Within-individual 
predictiona   Between-individual 

predictionb   
Capsaicin vs. 

Control 
(sensitivity) 

  
Capsaicin vs. 
Bitter taste 
(specificity) 

  
Capsaicin vs. 
Aversive odor 
(specificity) 

r P    r P   accuracy P   accuracy P    accuracy P 

Study 1 
(Training, n = 19) 0.639 2.99E-12   0.343 

(0.285)d 
0.0350 
(0.236)   89% 0.0007             

                              
Study 2 
(Validation, n = 42) 0.471 3.24E-10   0.446 

(0.385) 
2.15E-05 
(0.0119)   88% 4.43E-07   76% 0.0009       

                              

Study 3 
(Independent, n = 48) 0.507 3.20E-14   0.515 

(0.404) 
8.23E-08 
(0.0044)   88% 1.01E-07   85% 6.24E-07   85% 6.24E-07 

 
Note. Studies 1-3 included the capsaicin and control conditions that were used for testing model sensitivity. Studies 2 and 3 
additionally had the bitter taste and aversive odor conditions that were used for testing model specificity. We used Study 1 as a 
training set, Study 2 as a validation set, and Study 3 as an independent test set. aTo evaluate the model performance in predicting 
within-individual variation in pain ratings, we calculated mean within-individual prediction-outcome correlation. P-values were based 
on a bootstrap test (two-tailed). bTo evaluate the model performance in predicting between-individual variation in pain ratings, we 
predicted the average ratings of each condition across individuals. P-values were based on one-sample t-tests (two-tailed). cWe also 
conducted forced choice classification to evaluate the model sensitivity and specificity. P-values were based on binomial tests (two-
tailed). dNumbers in parentheses indicate the between-individual prediction only using the capsaicin condition. 
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Supplementary Table 2. Prediction performance of the tonic pain unpleasantness model across Studies 1-3 
 

Datasets 

Prediction-outcome correlation   Forced-choice discriminationc 

Within-individual 
predictiona   Between-individual 

predictionb   
Capsaicin vs. 

Control 
(sensitivity) 

  
Capsaicin vs. 
Bitter taste 
(specificity) 

  
Capsaicin vs. 
Aversive odor 
(specificity) 

r P    r P   accuracy P   accuracy P    accuracy P 

Study 1 
(Training, n = 19) 0.481 6.12E-06   0.264 0.1092   89% 0.0007             

                             

Study 2 
(Validation, n = 42) 0.507 1.53E-11   0.449 1.88E-05   88% 4.43E-07   79% 0.0003       
                              

Study 3 
(Independent, n = 48) 0.540 4.82E-19   0.516 7.21E-08   85% 6.24E-07   88% 1.01E-07   90% 1.37E-08 

 
Note. See the Note for Supplementary Table 1. 
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Supplementary Table 3. Predictive performance of the tonic pain signature on clinical pain 
data (Studies 4-5, Supplementary Data 1) 
 

Datasets Clinical populations Task types N Performance 

Prediction of overall pain scoresa   r P 

Study 4 
(Vachon-Presseau et al.) 

Subacute back pain 

Spontaneous 
pain rating 53 0.587  3.91E-06 

Resting 53 0.089  0.5283 

Chronic back pain 

Spontaneous 
pain rating 20 0.301  0.1968 

Resting 20 0.558  0.0106 

            

Classification of chronic back painb    accuracy P 

Study 5 
(Mano et al.) 

Chronic back pain 
(Japan) Resting 63 73% 0.0003 

Chronic back pain 
(U.K.) Resting 34 71% 0.0243 

            

Predicting reduced pain (% analgesia)c   r P 

Supplementary Data 1 
(Tetreault et al.) 

Placebo responder Resting 18 0.666  0.0025 

Drug (Duloxetine) 
responder Resting 8 -0.330  0.4241 

Non-responder Resting 30 -0.133  0.4838 

 

Note. We obtained all clinical pain data from the OpenPain Project (OPP) database available at 
http://www.openpain.org/. aStudy 4 included longitudinal fMRI scans of patients with sub-acute 
back pain (SBP) and chronic back pain (CBP) and had multiple different task data6, including 
spontaneous pain rating and resting-state tasks. Note that we used the data from patients who had 
data from both task types (testing n = 53 and 20 for SBP and CBP patients, respectively). P-
values were based on one-sample t-tests (two-tailed). bStudy 5 included resting-state fMRI scans 
of CBP patients and healthy age-matched controls8. The data were collected from two 
independent sites (Japan and UK). The Japan dataset (n = 63) consisted of 24 CBP patients and 
39 healthy controls, and the UK dataset (n = 34) consisted of 17 CBP patients and 17 healthy 
controls. P-values were based on binomial tests (two-tailed). cSupplementary Data 1 included 
pre-treatment resting-state fMRI data of patients with chronic knee pain (osteoarthritis)10. In the 
study, the patients were randomly assigned to drug (duloxetine) or placebo treatment groups. 
After the treatment, the patients were classified into treatment responders or non-responders 
based on a fixed threshold of analgesic response (20% reduction of pain ratings). P-values were 
based on one-sample t-tests (two-tailed). 
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Supplementary Table 4. Top 39 (0.1%) stable connections of the tonic pain signature 
 
Rank Weights Regions MNI coordinates 

Positive connections 

#1 0.0003308  Lt. inferior temporal gyrus (BA37, ventrolateral) - Lt. middle occipital gyrus (-58,-60,-6) - (-34,-87,13) 

#2 0.0003259  Lt. middle temporal gyrus (BA37, dorsolateral) - Lt. middle occipital gyrus (-61,-57,7) - (-34,-87,13) 

#3 0.0002891  Lt. precentral gyrus (BA4, trunk) - Rt. precuneus (BA7, medial) (-16,-21,76) - (3,-63,52) 

#4 0.0002799  Lt. precuneus (BA7, medial) - Lt. postcentral gyrus (BA1/2/3, trunk) (-7,-63,52) - (-22,-33,70) 

#5 0.0002773  Rt. inferior parietal lobule (BA40, rostrodorsal) - Lt. parietooccipital sulcus (dorsomedial) (45,-33,46) - (-13,-66,25) 

#6 0.0002771  Rt. precentral gyrus (BA4, upper limb) - Lt. inferior parietal lobule (BA39, rostrodorsal) (33,-21,58) - (-40,-60,46) 

#7 0.0002635  Lt. precentral gyrus (BA4, trunk) - Rt. medial superior occipital gyrus (-16,-21,76) - (15,-84,37) 

#8 0.0002634  Lt. paracentral lobule (BA4, lower limb) - Rt. precuneus (BA7, medial) (-7,-21,61) - (3,-63,52) 

#9 0.0002541  Lt. precentral gyrus (BA4, trunk) - Lt. precuneus (BA7, medial) (-16,-21,76) - (-7,-63,52) 

#10 0.0002474  Rt. precuneus (BA7, medial) - Lt. postcentral gyrus (BA1/2/3, trunk) (3,-63,52) - (-22,-33,70) 

#11 0.0002400  Lt. superior temporal gyrus (BA22, rostral) - Lt. middle temporal gyrus (BA37, dorsolateral) (-58,-3,-9) - (-61,-57,7) 

#12 0.0002322  Lt. precentral gyrus (BA4, trunk) - Lt. superior parietal lobule (BA7, rostral) (-16,-21,76) - (-19,-60,64) 

#13 0.0002285  Lt. paracentral lobule (BA4, lower limb) - Lt. inferior temporal gyrus (BA37, ventrolateral) (-7,-21,61) - (-58,-60,-6) 

#14 0.0002265  Rt. posterior superior temporal sulcus (caudal) - Rt. inferior parietal lobule (BA39, rostrodorsal) (54,-39,13) - (36,-63,43) 

#15 0.0002182  Rt. paracentral lobule (BA4, lower limb) - Rt. lingual gyrus (caudal) (3,-21,61) - (9,-84,-6) 

#16 0.0002085  Rt. inferior parietal lobule (BA40, rostroventral) - Lt. precuneus (BA7, medial) (54,-27,28) - (-7,-63,52) 

#17 0.0001976  Rt. superior temporal gyrus (BA41/42) - Lt. caudate (dorsal) (51,-24,13) - (-16,4,16) 

#18 0.0001834  Rt. posterior superior temporal sulcus (caudal) - Hypothalamus (54,-39,13) - (-1,1,-9) 

#19 0.0001829  Lt. precentral gyrus (BA4, trunk) - Rt. superior parietal lobule (BA7, caudal) (-16,-21,76) - (15,-69,55) 

        

(Supplementary Table 4 continues on next page) 
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Rank Weights Regions MNI coordinates 

(Continued from previous page) 

        

#20 0.0001754  Lt. inferior parietal lobule (BA39, rostrodorsal) - Lt. medial superior occipital gyrus (-40,-60,46) - (-13,-87,31) 

#21 0.0001744  Lt. superior parietal lobule (BA7, postcentral) - Lt. inferior parietal lobule (BA39, caudal) (-25,-48,67) - (-34,-78,31) 

#22 0.0001726  Rt. paracentral lobule (BA4, lower limb) - Rt. inferior occipital gyrus (3,-21,61) - (30,-84,-9) 

#23 0.0001654  Rt. precuneus (BA5, medial) - Lt. postcentral gyrus (BA1/2/3, trunk) (6,-45,58) - (-22,-33,70) 

#24 0.0001625  Rt. precuneus (BA7, medial) - Lt. V5/MT+ (3,-63,52) - (-49,-72,7) 

#25 0.0001584  Rt. superior temporal gyrus (BA41/42) - Lt. thalamus (caudal temporal) (51,-24,13) - (-13,-21,16) 

#26 0.0001518  Lt. middle frontal gyrus (BA6, ventrolateral) - Rt. precentral gyrus (BA4, upper limb) (-34,4,55) - (33,-21,58) 

#27 0.0001333  Rt. superior parietal lobule (BA5, lateral) - Rt. inferior parietal lobule (BA40, rostroventral) (33,-42,55) - (54,-27,28) 

#28 0.0001313  Lt. superior parietal lobule (BA7, intraparietal) - Rt. parietooccipital sulcus (ventromedial) (-28,-57,55) - (12,-63,13) 

#29 0.0001304  Rt. superior temporal gyrus (BA41/42) - Lt. thalamus (rostral temporal) (51,-24,13) - (-4,-15,7) 

        

Negative connections   

#1 -0.0004139  Rt. superior temporal gyrus (BA38, medial) - Rt. cerebellum (lobule VI) (30,16,-33) - (21,-54,-24) 

#2 -0.0003892  Rt. superior temporal gyrus (BA38, medial) - Rt. lingual gyrus (rostral) (30,16,-33) - (15,-57,-6) 

#3 -0.0003209  Rt. superior temporal gyrus (BA38, medial) - Rt. parahippocampal gyrus (area TL) (30,16,-33) - (27,-30,-15) 

#4 -0.0003077  Lt. superior temporal gyrus (BA22, caudal) - Rt. superior temporal gyrus (BA22, rostral) (-64,-33,7) - (54,-12,-3) 

#5 -0.0003033  Lt. cerebellum (lobule IX) - Brainstem (-10,-51,-42) - (-1,-24,-27) 

#6 -0.0003008  Lt. parahippocampal gyrus (BA35/36, rostral) - Vermis. cerebellum (lobule IX) (-31,-6,-33) - (-4,-54,-36) 

#7 -0.0002895  Rt. superior temporal gyrus (BA38, lateral) - Lt. inferior temporal gyrus (BA20, rostral) (45,13,-18) - (-46,-3,-39) 

#8 -0.0002862  Rt. superior temporal gyrus (BA38, medial) - Rt. parietooccipital sulcus (ventromedial) (30,16,-33) - (12,-63,13) 

#9 -0.0002532  Rt. precentral gyrus (BA4, head and face) - Lt. inferior temporal gyrus (BA20, rostral) (51,-3,34) - (-46,-3,-39) 

#10 -0.0001850  Lt. inferior temporal gyrus (BA20, rostral) - Lt. cingulate gyrus (BA23, caudal) (-46,-3,-39) - (-10,-24,43) 
 

Note. Top 39 (0.1%) stable connections based on bootstrap tests with 10,000 iterations (P < 0.000028, FDR q < 0.027, two-tailed).  
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