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Significance

Pleasure and pain, as 
fundamental emotional 
experiences, possess shared 
general affective dimensions 
such as positive vs. negative (i.e., 
affective valence) or weak vs. 
strong (i.e., affective intensity). 
The understanding of how these 
common affective dimensions 
across pleasure and pain are 
encoded in the brain carries 
significant clinical implications, 
particularly concerning pleasure-
induced analgesia or anhedonia 
comorbid with chronic pain. 
Here, we identified brain 
representations of affective 
intensity and valence shared 
across pleasure and pain. These 
two representations were not 
only spatially nonoverlapping 
with each other but also 
functionally connected to distinct 
large-scale brain networks. Our 
findings support the existence of 
the modality-general affective 
coding in the brain, integrating 
distinct sensory information of 
pleasure and pain into general 
affective experiences.
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Pleasure and pain are two fundamental, intertwined aspects of human emotions. 
Pleasurable sensations can reduce subjective feelings of pain and vice versa, and 
we often perceive the termination of pain as pleasant and the absence of pleasure 
as unpleasant. This implies the existence of brain systems that integrate them into 
modality-general representations of affective experiences. Here, we examined rep-
resentations of affective valence and intensity in an functional MRI (fMRI) study  
(n = 58) of sustained pleasure and pain. We found that the distinct subpopulations of 
voxels within the ventromedial and lateral prefrontal cortices, the orbitofrontal cortex, 
the anterior insula, and the amygdala were involved in decoding affective valence 
versus intensity. Affective valence and intensity predictive models showed significant 
decoding performance in an independent test dataset (n = 62). These models were 
differentially connected to distinct large-scale brain networks—the intensity model to 
the ventral attention network and the valence model to the limbic and default mode 
networks. Overall, this study identified the brain representations of affective valence 
and intensity across pleasure and pain, promoting a systems-level understanding of 
human affective experiences.

pain and pleasure | functional MRI | predictive modeling | affective neuroscience

Pain and pleasure are two representative emotional entities of negative and positive affect 
(1). They interact with each other to generate a subjective interpretation of current hedonic 
status (2). For instance, pleasant stimuli can reduce pain, while painful stimuli can reduce 
pleasure. In addition, pain relief is often perceived as pleasant, and the absence of pleasure, 
also known as anhedonia, is common in patients with chronic pain. This implies that 
there exist brain systems that integrate pain and pleasure. Although painful and pleasant 
sensations are processed through distinct spinal and peripheral circuits (3, 4), they should 
ultimately be integrated into modality-general affective experiences (5, 6) in higher-level 
core affective brain systems (7–12). This idea has been supported by a large body of lit-
erature showing the overlap in the brain regions involved in pain and pleasure (13). Many 
of the overlapping brain regions are rich in opioid receptors, which play important roles 
in hedonic feelings and motivation (14) and the interaction between pain and pleasure 
(13, 15). However, most previous studies have been conducted on either pain or pleasure 
separately, and a direct comparison of their neural representations within the same indi-
viduals is lacking. Although some human and nonhuman primate studies (16–19) have 
identified a set of brain regions that respond to both positive and negative emotions, these 
studies have used nonpainful aversive stimuli rather than painful stimuli. A few animal 
studies have reported that the amygdala (20) and the anterior cingulate cortex (21) contain 
neurons that respond to both pain and pleasure, but these findings have been limited  
to specific local regions, and their generalizability to humans has not been well 
established.

In addition, it remains elusive how brain regions that are activated by both pain and 
pleasure differentially encode each type of affect. One possibility is that these brain regions 
represent affective valence, which ranges from negative to positive on a hedonic continuum 
where pain and pleasure show a marked difference (22). However, a growing number of 
studies have found some neural populations that also respond to both positive and negative 
valence, which has been referred to as the valence-general affective workspace (23), 
unsigned valence (24), arousal (7, 25), and salience (26, 27). We refer to this as affective 
intensity, which reflects the magnitudes of positive and negative feelings and is proposed 
as another fundamental dimension of core affect. Both affective valence (referred to here 
as “valence”) and affective intensity (referred to here as “intensity”) are important for 
decision-making and survival because they influence an organism’s approach or avoidance 
responses to a stimulus or situation and its perceived importance (11, 12, 28), potentially 
involving distinct neural populations (29). However, the brain representations of these D
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general affective codes, i.e., affective valence and intensity, have 
yet to be identified at the systems level.

In this study, we examined the brain representations of affective 
valence and intensity across sustained pleasure and pain with the 
information mapping (30) and predictive modeling approaches 
(31). More specifically, our key research questions include: 1) Which 
brain regions contain information about pleasure and pain? Among 
them, which brain regions overlap? 2) Can we identify predictive 
models of affective valence and intensity within the overlapping 
brain regions? 3) Which large-scale brain networks are correlated 
with these predictive models? To answer these questions, we used 
an axiomatic approach (32, 33) to specify brain regions that contain 
information on pain, pleasure, and the affective dimensions shared 
across pain and pleasure as follows:

Axiom 1: Brain regions encoding information for sus-
tained pain or pleasure must significantly predict ratings 
of subjective pain or pleasure.

Axiom 2: Of the brain regions identified in Axiom 1, 
those encoding “affective intensity” should predict both 
pain and pleasure ratings, irrespective of the ratings’ 
polarity.

Axiom 3: Of the brain regions identified in Axiom 1, those 
encoding “affective valence” should predict both pain and 
pleasure ratings in relation to the ratings’ directional signs.

We conducted an fMRI experiment (Study 1, n = 58), in which 
participants continuously rated their subjective pleasantness and 
unpleasantness while experiencing sustained pain and pleasure. 
We induced sustained pain and pleasure by delivering capsaicin 
and chocolate fluids, respectively, into the participants’ oral cavities 
via a mouthpiece (Fig. 1A). During the fMRI scans, which lasted 
14.5 min and included two-times fluid deliveries, participants 
provided continuous ratings using a modified version of the gen-
eral Labeled Magnitude Scale (gLMS) (34). Water was delivered 
at all other times (Fig. 1B).

We first used the multivariate pattern–based information map-
ping approach to identify the brain regions containing informa-
tion about dynamic changes in pleasantness–unpleasantness 
ratings within and across individuals. Among the brain regions 
that showed significant decoding performance for both pain and 
pleasure, there were seven overlapping brain regions, including 
the ventromedial and lateral prefrontal cortices, the posterior orb-
itofrontal cortex, the ventral anterior insula, and the amygdala, 
which largely correspond to the neural reference space for core 

Fig. 1.   Experimental overview and regions of interest. (A) Overview of the fMRI experiment. We delivered fluids using an MR-compatible fluid delivery system 
(gustometer) and removed fluids from participants’ oral cavity during the experiment using a suction device. While experiencing capsaicin and chocolate fluids, 
participants continuously rated their subjective feelings of pleasantness and unpleasantness using the gLMS. (B) Experimental conditions included the capsaicin 
(pain), chocolate (pleasure), and control (neutral) conditions. Capsaicin or chocolate fluid was delivered twice in the middle of the scan, a duration of 1.5 min each 
for capsaicin fluid, and a duration of 3 min each for chocolate fluid. All conditions lasted 14.5 min, and their order was counterbalanced across the participants. (C) 
Locations of 48 a priori regions of interest (ROIs). The ROIs were selected based on previous literature, as provided in SI Appendix, Fig. S1. (D) Continuous ratings 
for the capsaicin and chocolate conditions (n = 58). The solid lines indicate group average ratings (purple: pain, yellow: pleasure), and the shading indicates SEM.
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affect (8). We then developed predictive models of valence and 
intensity using these seven overlapping brain regions to identify 
and compare the fine-grained brain representations of each affec-
tive dimension (23). Both the valence and intensity models 
showed significant prediction performance in the training and 
independent test datasets (Study 2, n = 62). The important pre-
dictive features of these models included largely nonoverlapping 
subregions distributed across the seven brain regions. The colo-
calized, but distinct, brain representations of valence and intensity 
were correlated with distinct large-scale brain networks. The 
valence model was correlated with the limbic and default mode 
networks, whereas the intensity model was correlated with the 
ventral attention network.

Results

Identifying Brain Regions Containing Information of Sustained 
Pleasure and Pain. To address the first research question (“Which 
brain regions contain information about pleasure and pain? 
Among them, which brain regions overlap?”), we identified a 
set of brain regions whose activation patterns are predictive of 
pleasantness–unpleasantness ratings during the chocolate (i.e., 
pleasure) or capsaicin (i.e., pain) condition. To minimize false 
positives, we limited our search to the 48 a priori ROIs known 
to respond to either pain or pleasure in the previous literature 
(Fig.  1C). The ROIs include brainstem and midbrain regions 
including the nucleus of the solitary tract, rostral ventral medulla, 
parabrachial nucleus, and periaqueductal gray (35), subcortical 
regions including the amygdala, ventral pallium, ventral striatum, 
nucleus accumbens, thalamus, and hypothalamus (35), insular 
cortex regions including the insula anterior inferior cortex, 
insula anterior/middle/posterior short gyri, and insula anterior/
posterior long gyri (36), primary somatosensory cortex, anterior/
middle/posterior operculum, anterior/posterior orbitofrontal 
cortices (OFCs), 12 parcellations of the medial prefrontal cortex 
(mPFC01-12) (37), and 14 parcellations of the lateral prefrontal 
cortex (lPFC01-14) (37). SI Appendix, Fig. S1, provides the list 
of previous studies that reported these ROIs’ responses to pain 
or pleasure stimuli and alternative nomenclature of the medial 
prefrontal regions.

For each of these ROIs, we trained fMRI pattern–based models 
to predict pleasantness–unpleasantness ratings for the pain or 
pleasure condition separately. Fig. 1D shows the overall patterns 
of pleasantness–unpleasantness ratings for the capsaicin and choc-
olate conditions, which served as the outcome variable in this 
pattern-based information mapping. The rating patterns clearly 
showed varying magnitudes of pleasantness and unpleasantness 
induced by dual administrations of capsaicin and chocolate fluids, 
which is an important design feature to improve the specificity of 
predictive models. The individual behavioral ratings fluctuated 
across moderate-to-strong levels for capsaicin and chocolate deliv-
eries (SI Appendix, Fig. S2). Overall pain intensity ratings collected 
after the capsaicin conditions also reached moderate to strong 
levels, suggesting that the capsaicin stimuli effectively induced 
pain in all participants (SI Appendix, Fig. S3).

We provide the details of the predictive modeling in Materials 
and Methods and SI Appendix, Fig. S4, but in brief, we used beta 
estimates of 34 time-bins from a GLM of fMRI data (i.e., 25 s per 
time-bin) to enhance the signal-to-noise ratio and remove nuisance 
effects. We applied principal component regression (PCR) on the 
capsaicin and control condition data to develop pain models and 
on the chocolate and control condition data to develop pleasure 
models to predict rating variability within and across individuals. 
To account for the different numbers of voxels in each ROI, we 

used the same number of principal components (13 PCs) across 
ROIs (for details of how we selected the number of PC, see 
SI Appendix, Materials and Methods). We calculated model perfor-
mance with the averaged within-individual correlation between 
predicted and actual ratings using leave-one-subject-out cross- 
validation (LOSO-CV).

Among the 48 ROIs, seven regions showed significant decoding 
performance for both pain and pleasure (Fig. 2A). These include 
the amygdala, the insula anterior inferior cortex (which is also 
called ventral anterior insula; below, we added alternative region 
names in the parenthesis), mPFC04 (ventromedial PFC), the pos-
terior OFC, lPFC05, lPFC09, and lPFC14 (ventro- to dorso-lateral 
PFC). Their mean within-individual correlations between the 
actual and predicted ratings were r = 0.11 to 0.18, mean 
within-individual mean squared error (mse) = 0.052 to 0.054, P = 
0.00001 to 0.0045 for predicting pain, and mean r = 0.09 to 0.13, 
mean mse = 0.021 to 0.022, P = 0.0005 to 0.0105 for predicting 
pleasure. These were significant after the correction for multiple 
comparisons with false discovery rate (FDR) q < 0.05, bootstrap 
test, two-tailed. Many of these regions are among the brain struc-
tures that have been implicated in the common neurobiology of 
pain and pleasure (13) and substantially overlap with the hypo-
thetical neural reference space of core affect (i.e., “affective work-
space”) (8). The brain regions important only for the prediction 
of pain included the anterior OFC, mPFC07 (midcingulate cor-
tex), lPFC03 (frontal pole), and lPFC13 (presupplementary motor 
area). The brain regions important only for the prediction of pleas-
ure included the insula anterior and posterior long gyri, mPFC01 
(a dorsal part of the midcingulate cortex), and lPFC11 (supple-
mentary motor area). The brainstem regions showed poor predic-
tion performance, which could be related to their low temporal 
signal-to-ratio (SI Appendix, Fig. S5). Decoding performance was 
not significantly associated with the within-individual variability 
of pleasantness–unpleasantness ratings (SI Appendix, Figs. S6 and 
S7), the variances explained by the same number of PCs (i.e., 13 
PCs; SI Appendix, Fig. S8A, see also SI Appendix, Discussion), and 
the number of voxels within each ROI (SI Appendix, Fig. S8B). 
For decoding between-individual variability of behavioral ratings, 
brain regions associated with either pain or pleasure exhibited 
performances that, while not statistically significant, outperformed 
other brain regions (SI Appendix, Fig. S9).

We conducted two additional analyses to examine the robust-
ness of these findings. First, we conducted a searchlight analysis 
(30), in which we trained a PCR model using the same method 
as we did in the ROI-level modeling for each searchlight (for 
details, see SI Appendix, Materials and Methods). We provided a 
brain map with the explained variances with 13 PCs across search-
lights and their relationship with prediction performance in 
SI Appendix, Fig. S10. With LOSO-CV, we identified a set of 
voxels that showed significant predictions for both pleasure and 
pain. Their spatial locations largely overlapped with the seven 
ROIs that were predictive of both pain and pleasure (Fig. 2B; see 
also SI Appendix, Fig. S11, for the same level of thresholding as 
Fig. 2A). Second, we tested different PC numbers (or different 
explained variance) for the PCR modeling, and the results showed 
similar patterns across PC numbers (SI Appendix, Figs. S12 and 
S13 and Materials and Methods). Overall, these results showed 
that our findings were robust across different modeling choices 
and methods.

Parsing Affective Valence and Intensity within the Overlapping 
Brain Regions. To address the second research question (“Can we 
identify predictive models of affective valence and intensity within 
the overlapping brain regions?”), we developed predictive models of D
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intensity and valence, which we hypothesized as two fundamental 
affective dimensions shared across pain and pleasure (Fig. 3A). We 
defined the absolute value of pleasantness or unpleasantness rating 
as an intensity score and the raw signed value of pleasantness (i.e., 
positive) or unpleasantness (i.e., negative) rating as a valence score. 
We developed PCR models to predict the intensity or valence scores 
using the combined data of the capsaicin, chocolate, and control 
conditions. We used all voxels across the seven overlapping brain 
regions for training the intensity and valence models because a 
multiple region–based model can yield better prediction performance 
than single region–based models by capturing information distributed 
across multiple brain systems (31) (for completeness, we also provided 
region-level intensity and valence modeling results in SI Appendix, 
Tables S1 and S2). Since the overall unpleasantness ratings induced 
by capsaicin were higher than the overall pleasantness ratings induced 
by chocolate, we matched the distribution of unpleasantness and 
pleasantness ratings before prediction by subsampling data and 
transforming the scores into ranks (±1 to ±10; please see SI Appendix, 
Materials and Methods). The outcomes of this subsampling procedure 
on data selection are detailed in SI Appendix, Fig. S14. We tested 
the resulting models on the independent test dataset (Study 2) to 
examine their generalizability.

The results showed that both intensity and valence models showed 
significant prediction performance (Fig. 3B) in the training and 
independent test datasets. The leave-one-subject-out cross-validated 
model performance in the training dataset was as follows: For the 

intensity model, the mean within-individual correlation between 
actual and predicted ratings was r = 0.25, P = 2.22 × 10−16, bootstrap 
test, two-tailed, mean mse = 13.061, and for the valence model, r = 
0.11, P = 0.0017, mean mse = 23.860. The models were also pre-
dictive of each condition separately (intensity model: for the capsa-
icin condition, mean r = 0.31, P = 4.64 × 10−8, mean mse = 19.958, 
for the chocolate condition, mean r = 0.23, P = 3.53 × 10−8, mean 
mse = 14.859; valence model: for the capsaicin condition, mean r = 
0.12, P = 0.0235, mean mse = 35.740, for the chocolate condition, 
mean r = 0.08, P = 0.0322, mean mse = 27.996), suggesting that 
these models are sensitive to both conditions. When we tested the 
models in the independent test dataset (Study 2), the intensity and 
valence models also showed significant prediction: For the intensity 
model, mean r = 0.16, P = 3.82 × 10−9, mean mse = 7.198; for the 
valence model, mean r = 0.10, P = 0.0053, mean mse = 7.908. Both 
models’ pattern expression values (Materials and Methods) showed 
fluctuations in the same direction with the hypothesized trajectories 
in the training (Fig. 3C) and independent test datasets (SI Appendix, 
Fig. S15).

Although we used ranks instead of original ratings to reduce 
any potential biases in the models due to different ranges of ratings 
for the pain and pleasure conditions, we did additional training 
with the original ratings to examine whether rank-based prediction 
influenced the model performance. The results showed compara-
ble model performance, mean r = 0.27, P = 2.22 × 10−16, mean 
mse = 0.0395 for the intensity model, and mean r = 0.11,  

Fig. 2.   Information mapping results. (A) Left: Brain regions that showed significant prediction performances (FDR q < 0.05) at predicting the pleasantness–
unpleasantness ratings for the pain and pleasure conditions (purple: pain-predictive; yellow: pleasure-predictive; vermilion: overlapping). Right: A scatter plot 
showing the cross-validated prediction performances. aINSinf, insula anterior inferior cortex; aINSlg, insula anterior long gyrus; pINSlg, insula posterior long 
gyrus; Amyg, amygdala; aOFC, anterior orbitofrontal cortex; pOFC, posterior orbitofrontal cortex; lPFC, lateral prefrontal cortex; mPFC, medial prefrontal cortex. 
(B) Top: Searchlight voxels that showed significant prediction performances (FDR q < 0.05). Bottom: Overlapping searchlight voxels.
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P = 7.62 × 10−4, mean mse = 0.0651 for the valence model 
(SI Appendix, Fig. S16A), suggesting that the rank-based predic-
tion did not have a substantial impact on the model performance. 
We also examined whether using all 48 ROIs for the prediction 
could have a meaningful effect on the model performance. The 
models with 48 ROIs also showed comparable model performance 
compared to the seven ROI-based models, mean r = 0.25, P < 
2.22 × 10−16, mean mse = 13.225 for the intensity model, and 
mean r = 0.09, P = 0.0232, mean mse = 24.522 for the valence 
model (SI Appendix, Fig. S16B), suggesting that the seven brain 
regions are sufficient to predict the affective intensity and valence.

To examine the spatial specificity of the seven ROI-based results, 
we conducted four additional analyses. First, we trained the inten-
sity and valence models using the voxels within the nonoverlapping 
41 ROIs. Results showed significant prediction for affective 

intensity, mean r = 0.24, P < 2.22 × 10−16, mean mse = 13.206, but 
a nonsignificant result for affective valence, mean r = 0.07,  
P = 0.0869, mean mse = 24.523. Second, we used the voxels outside 
of the 48 ROIs (SI Appendix, Fig. S17) for training intensity and 
valence models. We excluded the visual cortex because the contin-
uous rating procedure can induce an activation pattern in the visual 
cortex correlated to pain and pleasure experiences. Results showed 
significant but substantially lower prediction performance for affec-
tive intensity compared to the original results (mean r = 0.14, P = 
1.12 × 10−6, bootstrap test, two-tailed, mean mse = 13.477), and 
the prediction performance for affective valence was nonsignificant 
(mean r = 0.06, P = 0.1891, mean mse = 24.259). Third, even when 
we combined the other four pain-predictive and four pleasure- 
predictive ROIs, consistent voxels across the seven ROIs significantly 
contributed to the intensity prediction (SI Appendix, Figs. S18 and S19). 

Fig. 3.   Prediction modeling of affective intensity and valence. (A) Overview of the predictive modeling analysis. Here, we used data from the seven brain regions 
identified in the previous analysis. The outcome variable was either affective intensity, which was defined as the absolute values of pleasantness–unpleasantness 
ratings, or affective valence, which was defined as the raw signed values of the ratings. We conducted the rank-based subsampling based on the outcome 
variables to minimize the potential bias due to the greater rating magnitude for the capsaicin condition compared to the chocolate condition (for details, see 
SI Appendix, Materials and Methods). We applied PCR on the concatenated data across all conditions. (B) Model performance. The violin plots show the distribution 
of within-individual prediction-outcome correlations in the training dataset (with LOSO-CV) and the independent test dataset (green: intensity model, red: valence 
model). (C) The time course of pattern expression values of each model, which were calculated using LOSO-CV. The solid line represents the group average, and 
the shading represents the SEM (purple: capsaicin, yellow: chocolate). The boxes on the time axes indicate the fluid delivery period. (D) Predictive weight maps 
thresholded with FDR q < 0.05 based on bootstrap tests (10,000 iterations). Insets show the unthresholded weights for ROIs.
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Fourth, a binary classification model between the capsaicin vs. chocolate 
conditions based on the seven ROIs, instead of predicting affective 
valence scores, also showed significant accuracy (accuracy = 64%, 
P = 0.0479, forced-choice, binomial test, two-tailed) and similar 
spatial patterns of model weights with the original valence model 
(SI Appendix, Fig. S20). Overall, these results suggest that the seven 
overlapping regions are crucial and showed better prediction perfor-
mances for the intensity and valence prediction compared to other 
regions.

We compared the important voxels between the intensity and 
valence models based on the thresholded results at FDR q < 0.05, 
two-tailed, from bootstrap tests with 10,000 iterations (for the 
unthresholded maps, see SI Appendix, Fig. S21). The intensity and 
valence maps showed largely nonoverlapping spatial patterns of 
predictive weights (Figs. 3D and 4), suggesting that distinct sub-
populations of voxels within the seven brain regions are important 
for decoding affective valence versus intensity information. For 
example, there was a cluster of intensity-predictive voxels in the 
bilateral ventral anterior insula (Fig. 4A), which has been known 
as the primary taste cortex (38) and encoding the salience of visceral 
sensation (38–40), but there was also a cluster of valence-predictive 
voxels in the right ventral anterior insula, mostly nonoverlapping 
with the intensity-predictive voxels (Fig. 4A). Also in the amygdala, 
the intensity-predictive voxels were mainly located in the ventral 
part of the right basolateral amygdala with negative weights and 
in the dorsal part of the left basolateral amygdala with positive 
weights (Figs. 3D and 4B). In contrast, the valence-predictive 

voxels were mainly located in the left centromedial and the right 
superficial amygdala with negative weights. These results are con-
sistent with previous studies that the basolateral amygdala contains 
a population of neurons encoding valence-general salience (20, 
25), whereas the centromedial and superficial amygdala regions are 
important for processing negative valence (41–43). The posterior 
OFC contained intensity-predictive voxels mostly in the right 
medial part, while valence-predictive voxels in the lateral part 
(Fig. 4C). This is also supported by the previous finding that the 
medial part of this region, as a secondary gustatory cortex (38), 
encodes magnitude information of value (27). For the ventromedial 
PFC, the intensity-predictive voxels were located in the ventral 
part, whereas the valence-predictive voxels were located in the dor-
sal part (Fig. 4D), and for the dorsolateral PFC, the predictive 
weights of the two models were also largely nonoverlapping 
(Fig. 4E). In sum, these results suggest that the affective intensity 
and valence are represented by distinct subpopulations of voxels 
within the seven brain regions. However, the overall distribution 
of intensity- vs. valence-predictive voxels across brain regions sug-
gests that the insula is preferentially predictive of intensity, while 
the ventromedial PFC is preferentially predictive of valence 
(Fig. 4F). To see the relative importance of all voxels for the inten-
sity versus valence models, see SI Appendix, Fig. S21E.

Distinct Functional Brain Networks for the Affective Intensity 
and Valence. To situate the locally distinct brain representations 
of affective intensity and valence in the context of the global 

Fig. 4.   Significant voxels of the intensity and valence models. (A–E) To examine whether the significant voxels of the two models are overlapping or not, we 
examined the exact locations of the significant voxels (FDR q < 0.05) by visualizing them with different colors—green for the intensity model, red for the valence 
model, and blue for the overlapping voxels. Each section shows each ROI: (A) insula, (B) amygdala, (C) posterior OFC (pOFC), (D) mPFC04 (ventromedial PFC), and 
(E) lPFC05, 09, and 14 (dorsolateral PFC). (F) The pie charts show the proportions of significant voxels for the intensity model only (green), the valence model 
only (red), or both models (blue).
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functional brain networks (44) (SI  Appendix, Fig.  S22), we 
addressed the last research question (“Which large-scale brain 
networks are correlated with these predictive maps?”). To this end, 
we extracted the pattern expression values of intensity and valence 
models from the control condition data using the cross-validated 
predictive weights (45, 46). Using these pattern expression values 
as seeds, we obtained a whole-brain functional connectivity map 
for each individual by calculating Pearson correlations between 
the seeds and voxel-wise activity time series. We removed the 
seed regions (i.e., the mask of seven brain regions; Fig. 5A) from 
the resulting maps to help interpretation. Then, we visualized the 
voxels with significant positive connectivity across participants 
(FDR q < 0.05, one-sample t test, one-tailed) in Fig. 5 B and C. 
Here, we focused only on positive correlations because the negative 
correlations were difficult to interpret, but for completeness, we 
also provide the maps with both positive and negative correlations 
in SI Appendix, Fig. S23.

The results showed that the predictive maps of intensity and 
valence were correlated with distinct large-scale brain networks. 
As shown in Fig. 5B, the intensity model showed significant cor-
relations in the insula and the anterior midcingulate cortex, the 
key regions of the ventral attention (or salience) network (39, 40), 
which is an aggregation of salience and cingula-opercular net-
works. The valence model showed significant correlations in the 

ventromedial PFC and the posterior cingulate cortex, the key 
regions of the default mode network. In addition, there were also 
multiple significant voxels in the OFC and the superior temporal 
gyrus, which are a part of the limbic network (28). To verify the 
consistency of these results, we conducted two additional analyses. 
First, we obtained the conventional seed-based functional con-
nectivity by using significant (FDR q < 0.05, two-tailed, from 
bootstrap tests with 10,000 iterations) positive predictive weights 
from the intensity and valence models as a seed mask (SI Appendix, 
Fig. S24). Second, we obtained the same functional connectivity 
with the pattern expressions of the intensity and valence, based 
on the control condition data of the Study 2 dataset (SI Appendix, 
Figs. S25 and S26). Results from these two analyses were largely 
consistent with the pattern expression–based functional connec-
tivity results (Fig. 5).

Discussion

The current study investigated the brain representations of affective 
valence and intensity in sustained pleasure and pain. We first iden-
tified brain regions that contained information about pleasure and 
pain. The brain regions included the ventromedial and lateral PFCs, 
the posterior OFC, the ventral anterior insula, and the amygdala. 
We then developed predictive models of affective intensity and 

Fig. 5.   Functional connectivity maps for the intensity and valence models. (A) Masks of the seven overlapping brain regions as seeds. (B) Thresholded functional 
connectivity patterns using the pattern expression values of intensity and valence models as seeds (FDR q < 0.05, one-sample t test, one-tailed). The functional 
connectivity was calculated using the control condition data with LOSO-CV. Here, we tested the unidirectional hypothesis (i.e., focusing only on positive correlations) 
because the negative correlations were difficult to interpret. In addition, we excluded the brain coverage of the predictive models to focus on their relationship 
with other brain regions. (C) Left: Conjunction maps indicating results of the different models (green: intensity model; red: valence model). Right: A radar plot 
showing the posterior probability of the significant voxels within each large-scale functional network given the total number of voxels within each network.
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valence with these brain regions, which demonstrated significant 
prediction performance in both training and independent test data-
sets. The intensity and valence models were dissociable in their 
fine-grained spatial patterns of thresholded weights and were asso-
ciated with the two separate large-scale functional brain networks—
the ventral attention network for the intensity information vs. the 
limbic and default mode networks for the valence information. 
Overall, these results provided neuroimaging evidence of how the 
brain encodes pleasure and pain based on the general affective 
dimensions of valence and intensity.

First, our findings support the existence of overlapping brain 
regions that contain information for both pleasure and pain. 
Although the relationship between pleasure and pain has been a 
topic of interest for a long time (1, 13, 47), it still remains unclear 
in which brain regions pleasure and pain are integrated and con-
nected. Previous studies have identified some brain regions com-
monly activated by pleasure and pain (13), but most of the studies 
examined pleasure and pain separately and did not directly com-
pare their brain representations. Our study aimed to fill this gap 
by inducing both sustained pleasure and pain in each individual 
and identifying brain regions predictive of ratings for both con-
ditions, by using the axiomatic approach. Using a multivariate 
pattern–based information mapping approach, we identified seven 
brain regions for pleasure and pain, including the ventromedial 
and lateral PFCs, posterior OFC, ventral anterior insula, and 
amygdala. These regions were among the brain regions that have 
been implicated in the pleasure–pain interaction (48–50) and the 
affective workspace in the brain (8). Although the stringent nature 
of our axiomatic approach may miss the other brain regions that 
encode pain or pleasure information, its rigor allowed us to iden-
tify the brain representations of complex behaviors that are sus-
ceptible to confounds, as highlighted in previous studies (32, 33).

Second, our results suggest that the two core dimensions of 
affective experience—affective intensity and valence—are encoded 
in these overlapping brain regions. We were able to develop pre-
dictive models of affective intensity and valence based on the 
multivariate patterns of the brain regions’ activity, and the predic-
tive models were generalizable across training and independent 
test datasets. These results are in line with the previous meta-analysis 
that there exist both valence-specific and valence-general brain 
regions (23). To further validate our findings, it would be inter-
esting to explore whether the predictive models we developed are 
responsive to pharmacological or contextual manipulation  
(49, 51–54). Such investigations could have significant implica-
tions for clinical applications and represent a promising direction 
for future research. In addition, it is important to consider that 
other factors might contribute to the shared affective dimensions 
across sustained pain and pleasure, including salience, cognitive 
appraisal, and action tendencies. While it is inherently challenging 
to disentangle these effects, our models present an opportunity 
for future studies to further characterize and understand what 
these models represent. This ongoing investigation will enhance 
our understanding of the complex interplay between these various 
elements in shaping our affective experiences.

Third, through detailed analyses of the model weights, we found 
that the affective intensity and valence were represented in spatially 
distinct areas even within the same anatomical brain regions. In 
addition, the two predictive models were correlated with distinct 
large-scale functional brain networks—i.e., the ventral attention 
network was correlated with the affective intensity model, whereas 
the limbic and default mode networks were correlated with the 
valence model. These findings are in line with previous studies 
suggesting that the ventral attention network is important for 
detecting and identifying important and relevant stimuli given 

one’s current contexts (38, 40, 55), while the limbic and default 
mode networks are important for modality-general value infor-
mation (16, 56) and subjective affective values (57–59). Thus, our 
results suggest that the affective intensity and valence are processed 
with distinct brain circuits that are colocalized but connected to 
distinct large-scale brain systems. This can serve as a guiding 
hypothesis for more invasive animal studies targeting detailed 
neural pathways.

Finally, we also identified some brain regions only predictive of 
either pleasure or pain. The pain-predictive brain regions included 
the anterior midcingulate cortex (mPFC07), which is known to 
be preferentially associated with pain among many relevant func-
tions such as negative emotion and cognitive control (60). Some 
lateral PFC regions (lPFC03 and 13) also appeared to be predictive 
of pain. These regions are part of the frontoparietal network, which 
is known to be important for pain, particularly chronic and sus-
tained pain (61–63). Except for these lateral prefrontal regions, 
the pain-predictive regions also showed substantial spatial overlaps 
with the neurologic pain signature (NPS) (64). The dorsal poste-
rior part of the insular cortex has been implicated for pain pro-
cessing but was not identified as a pain-predictive region in our 
results, which is discussed in detail in SI Appendix, Discussion. The 
pleasure-predictive brain regions included the insular and primary 
gustatory cortex regions, which could reflect that the affective 
experience was induced by gustatory stimuli (65).

This study also has some limitations. First, although our infor-
mation mapping and predictive modeling analyses showed signif-
icant decoding performances, their effect sizes were small to 
medium. Although this is not ideal, we reasoned that the small to 
medium effect sizes are acceptable in our cases. For example, the 
main goal of region-level information mapping was to identify 
the brain regions that contain information about pleasure and 
pain, not to develop predictive models with the highest effect sizes. 
In addition, the predictive models of affective intensity and valence 
showed significant prediction performance even in the independ-
ent test dataset. Thus, our results demonstrated that the predictive 
models were robust despite their small to medium effect sizes. 
Future studies could explore enhancing prediction performance 
by using large sample sizes and supervised dimension reduction 
techniques such as partial least squares, given that the regression 
based on the first few PCs may fail if the dependent variables are 
strongly correlated to the last few PCs (66). Second, we only used 
the brain activation patterns for our predictive modeling. Since 
the experience of sustained pleasure and pain may induce global 
changes that persist for an extended period of time, an alternative 
approach could be to utilize patterns of functional connectivity, 
as we did in our previous study (63). Though we focused on the 
activation patterns to identify brain regions for pleasure and pain 
in the current study, we could use both activation and connectivity 
patterns to maximize the prediction performance. This possibility 
should be examined in future studies. Third, the brain regions 
only predictive of either pain or pleasure might also encode sali-
ence or other processes, rather than exclusively related to pain or 
pleasure. However, the primary goal of this study was to identify 
the brain regions encoding both pain and pleasure information 
and to dissociate the intensity and valence codes across these 
regions. To pinpoint brain regions that are more specifically related 
to each domain, we may need a better control condition that has 
salience dynamics that are well matched to those in the pain and 
pleasure conditions. Fourth, the pain and pleasure experiences 
induced by capsaicin and chocolate stimuli were unbalanced. 
Although we tried to mitigate potential bias from this imbalance 
by subsampling ratings, this procedure tended to exclude the time 
points with high unpleasantness scores within the pain condition D
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more frequently. This might result in capturing different aspects 
of sustained pain and pleasure by our modeling. Future research 
should balance the overall levels of pleasantness and unpleasant-
ness ratings to avoid other potential effects of this subsampling. 
Fifth, we did not strictly control participants’ most recent meals, 
satiety levels, or baseline taste preferences. Although we found no 
significant association between participants’ (un)pleasantness rat-
ings on capsaicin and chocolate and their sensitivity to relevant 
tastes (34, 67) (SI Appendix, Fig. S27), future studies could aim 
to control better for these variables. Finally, compared to Study 
1, Study 2 exhibited lower pain and pleasure ratings, potentially 
attributable to variations in experimental conditions (see also 
SI Appendix, Discussion). While our intensity and valence models 
showed consistent performance across both studies, caution is 
needed in interpreting these results.

Overall, the current study provides insights into the brain rep-
resentations of affective valence and intensity across pleasure and 
pain, promoting the system-level understanding of human affec-
tive experiences.

Materials and Methods

More detailed information can be found in SI Appendix, Materials and Methods.

Ethical Statement. All participants provided written informed consent. The study 
protocol was approved by the institutional review board (IRB) of Sungkyunkwan 
University.

Region-level Information Mapping. To identify which brain regions were pre-
dictive of pain or pleasure, we conducted predictive modeling based on multi-
variate patterns of brain activity for different brain regions. We first defined 48 a 
priori ROIs covering the brainstem, subcortical regions, and prefrontal regions, 
based on previous studies (35–37) and the Harvard-Oxford brain atlas. For each 
ROI, we trained predictive models of pain or pleasure using the PCR algorithm. 
The modeling was based on the concatenated fMRI data across all 34 time-bins, 
conditions (i.e., capsaicin and control conditions or chocolate and control con-
ditions), and participants. We selected 13 principal components (PCs) to train 
regression models (please see SI Appendix, Materials and Methods, for how we 
selected 13 PCs) and then transformed the PC regression weights back to the 
voxel space for each brain region. We also tested different PC numbers for dif-
ferent levels of explained variance (i.e., 65%, 70%, 75%, 80%, and 85%), which 
showed similar performances with gradual changes (SI Appendix, Figs. S12 and 
S13). The numbers of voxels and explained variances of 48 ROIs across different 
PC numbers are provided in SI Appendix, Table S3.

We evaluated the mean within-individual correlation between predicted and 
actual outcomes (i.e., pleasantness–unpleasantness ratings) with the LOSO-CV. 
We examined their statistical significance using bootstrap tests with 10,000 
iterations to test whether the bootstrapped distribution of the within-individual 
correlations significantly deviated from zero. The ROIs that showed statistically 
significant predictions for both pleasantness and unpleasantness ratings (FDR-
corrected) were selected for further analyses of affective intensity and valence. We 
used the Benjamini–Hochberg procedure for the FDR correction (68).

Predictive Modeling of Affective Intensity and Valence. To examine how 
the seven brain regions for pain and pleasure encode two core affective dimen-
sions—affective intensity and valence—we first defined affective intensity as the 
absolute values of pleasantness–unpleasantness ratings and affective valence as 
the raw signed values of pleasantness–unpleasantness ratings. Using these as 
outcomes, we developed the PCR models to predict affective intensity and valence 
across all conditions (i.e., capsaicin, chocolate, and control) and participants. We 
used all the voxels within the seven brain regions for this modeling (please see 
SI Appendix, Materials and Methods, for the details).

The other procedures of predictive modeling were identical to the region-level 
information mapping. The number of PCs that explained 75% of the total variance 
was 123 for both intensity and valence models, and thus, we chose to use 123 PCs 
for the PCR modeling. We obtained the predictive weights of intensity and valence 
by transforming the PC regression weights back to the voxel space. Prediction 

performances of the intensity and valence models were evaluated using LOSO-CV. 
To examine the robustness of these two models, we also tried 1) developing PCR 
models to predict the original rating values instead of the ranks and 2) using the 
whole 48 ROIs (SI Appendix, Fig. S16). The procedure of predictive modeling of 
intensity and valence for each of the seven overlapping brain regions was also 
identical, using 31 PCs based on the same method used to choose the number 
of PCs in the region-level information mapping (SI Appendix, Tables S1 and S2).

The model predictions (or model responses) were calculated as the dot prod-
uct of vectorized brain activity with predictive weights, which we termed pattern 
expression (i.e., the expression of the multivariate pattern of a predictive model).

Pattern expression = �⃑w ⋅ x⃑ =

n
∑

i=1

w
i
x
i
,

where n is the number of voxels, w is the predictive weights, and x is the fMRI data. 
To minimize bias in the estimation of model performance, we used LOSO-CV—i.e., 
pattern expression values of one participant were calculated using the predictive 
weights trained on the data after excluding the participant’s data. We calculated 
the prediction-outcome correlation (i.e., a correlation between the pattern expres-
sion values and actual outcomes) for each individual and conducted bootstrap 
tests (i.e., resampling with replacement) on the correlation values with 10,000 
iterations. To identify the significant predictive weights, we conducted bootstrap 
tests with 10,000 iterations using the same PC number (= 123). We then tested 
whether the bootstrapped distribution of the predictive weights significantly 
deviated from zero. To test the generalizability of the models, we tested them 
on an independent test dataset (Study 2) with no ad hoc tuning of the predictive 
weights. We calculated the prediction-outcome correlation for each participant 
and conducted bootstrap tests.

Whole-brain Functional Connectivity Analysis of the Intensity and 
Valence Models. To examine which brain regions and networks are correlated 
with the predictive models of affective intensity and valence, we calculated the 
correlations between the pattern expression values and the whole-brain fMRI 
data. We used the data of the control condition of Study 1 for this analysis because 
it involved no painful or pleasant stimulation and thus reflected the intrinsic 
brain activity. For each participant, this analysis yielded the whole-brain functional 
connectivity maps with pattern expression values as seeds (45). We then con-
ducted t test to test whether the functional connectivity was significantly greater 
than zero across participants (i.e., positive connectivity) with FDR correction. We 
did not consider negative connectivity because anticorrelations were difficult to 
interpret. However, for completeness, we also obtained the thresholded functional 
connectivity maps with both positive and negative correlations in SI Appendix, 
Fig. S23. We also calculated how many suprathreshold voxels were included in 
each large-scale functional brain network (44).

Data, Materials, and Software Availability. The data and codes used to generate 
the main figures, including regions-of-interests, predictive models, and connectiv-
ity maps, are shared through Zenodo.org (https://zenodo.org/records/11239415) 
(69). In-house Matlab codes for fMRI data analyses are available at https://github.
com/canlab/CanlabCore (70) and https://github.com/cocoanlab/cocoanCORE (71).
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