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Supporting Information Text 

Discussion 
It is important to note that the insula anterior long gyrus, which included the dorsal posterior part 
of the insular cortex that is well-known for its involvement in pain processing (1), was not 
predictive of pain in our results (Fig. 2), even with using a more fine-grained insular parcellation 
or reducing sizes of the searchlight analyses (SI Appendix, Fig. S28). However, in our univariate 
voxel-wise analysis using TR-level data, the dorsal posterior insula appeared to track within-
individual changes in ratings for pain (SI Appendix, Fig. S29). This is in line with a previous 
study (1) showing that the dorsal posterior insula encodes capsaicin-induced heat pain in the 
univariate analysis. The inconsistent results from the two analyses might be attributed to the fact 
that univariate analyses treat the between-individual variability as a random effect whereas our 
multivariate models were trained to capture the variability. While within-individual variability in 
pain and pleasure would be closely related to the levels of stimulus intensity or salience, 
between-individual variability may contain additional information about valence or evaluative 
processes. Therefore, we chose to capture both the within- and between-individual variability in 
predictive modeling. When we conducted region-level predictive modeling while minimizing the 
effect of between-individual variability, similar to the univariate analyses, the dorsal posterior 
insula was significantly predictive of pain (SI Appendix, Fig. S30). Thus, the absence of dorsal 
posterior insula in pain-predictive regions might be because the predictive model of this region did 
not explain the between-individual variability of pain, corresponding with previous studies that 
dorsal posterior insula is primarily involved in stimulus intensity coding than subjective evaluation 
of pain (2, 3).  

The searchlight analysis results had a fewer number of overlapping voxels within the lateral 
prefrontal cortex (lPFC) regions that were part of the 7 overlapping brain regions (i.e., lPFC05, 
09, and 14) compared to the ROI-based analysis results (Fig. 2B). However, with the same level 
of thresholding as in the ROI-based analysis (P < 0.0120), we were able to identify more 
overlapping voxels within the lPFC regions (Fig. S11). This suggests that these regions had 
relatively marginal significance in separately predicting pain or pleasure ratings compared to 
other overlapping brain regions. However, these regions appeared to be important for predicting 
intensity and valence scores (Figs. 3D and 4E). 

Note that the association between the explained variance and the decoding performance across 
48 ROIs was negative, albeit not significant, for both pain and pleasure prediction (Fig. S8A). 
While the direction of this association in searchlight analysis was non-significant and inconsistent 
(Fig. S10B), we speculate that the negative association observed in ROI-level analysis may be 
due to the bias-variance tradeoff. That is, models based on PCs with larger explained variances 
may include more noises and thus lead to overfitting, which could reduce generalizability over the 
test datasets. 

While we used the same fMRI experimental protocols, there were significant differences in the 
overall ratings of pain and pleasure intensity ratings between Studies 1 and 2 (Fig. S3A; 
capsaicin: t(118) = 4.06, P = 8.94×10-5, chocolate: t(118) = 2.28, P = 0.0243, two-sample t-test, 
two-tailed). As a potential explanation for these differences, Study 2 included additional 
experimental conditions featuring diverse combinations of capsaicin and chocolate fluid deliveries 
within a run, whereas Study 1 only included the capsaicin- and chocolate-only conditions. Despite 
counterbalancing efforts, this may have influenced participants’ overall perception of these fluids 
and led to an overall decrease in stimulus intensity ratings of these fluids. These differences 
between Studies 1 and 2 were even more pronounced in the chocolate condition than in the 
capsaicin condition. The overall level of ratings was reduced, and the changes were slower in 
Study 2 compared to Study 1 (Table S5 and Fig. S31). The diminished quantity of chocolate fluid 
delivered to participants in Study 2 compared to Study 1 (Study 1 = 4.70±0.93 ml, Study 2 = 
3.89±1.03 ml, t(118) = 4.80, P = 4.68×10-6) might further explain these differences. Despite efforts 
to maintain the fluid delivery system consistent across the two-year interval between studies, we 
cannot dismiss the possibility of unidentified variables influencing chocolate fluid deliveries. 
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Overall, these factors may have synergistically contributed to the observed differences between 
Studies 1 and 2.  
 

Materials and Methods 
Participants. In Study 1, fifty-eight healthy, right-handed participants were included (27 females, 
Mage = 22.81, SDage = 2.83). We recruited participants from the Suwon area in the Republic of 
Korea. The preliminary eligibility of participants was determined through an online questionnaire, 
and those who had psychiatric, neurological, or systemic disorders and MRI contraindications 
were excluded. In Study 2, sixty-two healthy, right-handed participants were included (29 
females, Mage = 22.69, SDage = 2.66) based on the same recruitment criteria. Study 1 served as a 
‘training dataset’ and was used for developing and evaluating predictive models. Study 2 was an 
‘independent test dataset’ used only for the evaluation of the predictive models of intensity and 
valence. 
 
Experimental design. The fMRI experiment in Studies 1 and 2 consisted of three conditions; (1) 
‘control,’ (2) ‘capsaicin’ (i.e., pain), and (3) ‘chocolate’ (i.e., pleasure) conditions. The orders of 
these three conditions were counterbalanced across participants. To deliver liquids to 
participants, we used the custom-built 8-channel fluid delivery system (Octaflow II, ALA Scientific 
Instruments Inc., Westbury, NY) and a custom-built MR-compatible mouthpiece, where plastic 
tubes were inserted and connected to Tygon tubes to deliver and extract fluids. In addition, we 
used a suction device (Join Medical, Inc.) to remove fluids from a participant’s oral cavity during 
the experiment. The use of this suction procedure helped to minimize head movements caused 
by the swallowing of fluids. 
 For the ‘control’ condition, we delivered only water at a very slow speed (about 1.25 
ml/min) while participants were relaxed and instructed to continuously rate their current state of 
pleasantness and unpleasantness using an MR-compatible trackball device. For the ‘capsaicin’ 
and ‘chocolate’ conditions, capsaicin or chocolate fluids were delivered twice during each scan—
first after 90 seconds and then after 7 minutes from the beginning of the scan. Water was 
delivered at all other times. During scans, we asked participants to rate their subjective level of 
pleasantness or unpleasantness continuously. 
 For the capsaicin fluid, we used capsaicin-rich hot sauce (Jinmifood, Inc.), which was 
diluted with water to a concentration of around 20% (v/v). The capsaicin fluid was delivered for a 
duration of 90 seconds each, with a delivery volume of 0.28±0.11 ml [mean±SD] for each delivery 
in Study 1, and 0.31±0.11 ml for each delivery in Study 2. For the chocolate fluid, we used hot 
chocolate powder (Hershey’s, Inc.), which was dissolved in water to a concentration of around 
30% (w/v). The chocolate fluid was delivered for a duration of 3 minutes each, with a delivery 
volume of 4.70±0.93 ml for each delivery in Study 1, and 3.89±1.03 ml for each delivery in Study 
2. For more discussion of this experimental difference, please see SI Appendix, Supplementary 
discussion. The duration of fluid delivery was different between capsaicin and chocolate to 
match the duration of induced pleasure and pain experience similar between the two conditions. 
To minimize the residual effects of the capsaicin and chocolate fluids, we washed out 
participants’ oral cavity with water after each condition until they reported no lingering taste. In 
addition, we conducted the structural scan after the capsaicin condition to allow sufficient time for 
any remaining painful sensation to be alleviated. 
 
Rating scale. We used a modified version of the general Labeled Magnitude Scale (gLMS) for 
the pleasantness-unpleasantness rating. The scale was bidirectional with the center of the scale 
indicating “Not at all” (0) and the extremes of both sides indicating “Strongest imaginable 
unpleasantness of any kind” (-1) and “Strongest imaginable pleasantness of any kind” (1). The 
anchors were “Weak” (0.061), “Moderate” (0.172), “Strong” (0.354), and “Very strong” (0.533) on 
both sides. Before the fMRI scans, we provided a detailed explanation of how to use the rating 
scale while showing the anchors, but the anchors were not shown on the screen during the scan. 
To reduce the potential confounding effects of rating directionality, we randomly switched the 
labels of two rating extremes (i.e., pleasantness and unpleasantness) across participants. 
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fMRI data acquisition. Whole-brain fMRI data were acquired on a 3T Siemens Prisma scanner 
in the Center for Neuroscience Imaging Research at Sungkyunkwan University. High-resolution 
T1-weighted structural images were acquired. Functional EPI images were acquired with TR = 
460 ms, TE = 27.2 ms, multiband acceleration factor = 8, field of view = 220 mm, 82 × 82 matrix, 
2.7 × 2.7 × 2.7 mm3 voxels, 56 interleaved slices, number of volumes = 1893. We used Matlab 
(Mathworks) and Psychtoolbox (http://psychtoolbox.org/) for the stimulus presentation and 
behavioral data acquisition. 
 
fMRI data analysis. Structural and functional MRI data were preprocessed using our in-house 
preprocessing pipeline (https://github.com/cocoanlab/humanfmri_preproc_bids). This pipeline 
utilizes preprocessing tools in FSL and SPM12. We removed 18 initial volumes of functional EPI 
images for image intensity stabilization. Then, we co-registered structural T1-weighted images to 
the functional images and normalized them to MNI, and the functional EPI images were 
distortion-corrected, motion-corrected (realigned), normalized to MNI using T1 images with the 
interpolation to 2 × 2 × 2 mm3 voxels, and smoothed with a 5-mm FWHM Gaussian kernel. We 
then used 25-second time bin regressors convolved with the hemodynamic response function for 
GLM analysis and obtained 34 beta images. In the GLM analysis, we included nuisance 
covariates including 24 head motion parameters (x, y, z, roll, pitch, and yaw, their mean-centered 
squares, their derivatives, and squared derivative), linear drift, outlier indicators, and five principal 
components of white matter signals and those of ventricle signals. We also winsorized the values 
that were detected as spatiotemporal outliers (intensity values < median minus 5 SDs or > 
median plus 5 SDs) and applied a low pass filter with a 0.1 Hz threshold. The resulting beta 
images were concatenated and rescaled across participants and conditions in the SPM style (i.e., 
L1 normalization). We used these data as input features for the predictive modeling. We also 
down-sampled the pleasantness-unpleasantness ratings into 34 time-bins and used them as an 
outcome variable for the predictive modeling. A graphical illustration of making 34-bin data of 
fMRI and behavioral data is shown in SI Appendix, Fig. S4A. 
 
Choosing the number of principal components for region-level information mapping. Since 
the choice of the number of principal components (PCs) affects the number of free parameters of 
the model and thus has a significant impact on model performance, particularly in terms of its 
generalizability (e.g., in cross-validation), we used the same number of PCs for all 48 regions to 
strike a balance between capturing sufficient variance in the data and avoiding excessive 
complexity. To determine the number of PCs a priori, we first averaged all the time-bin data for 
each condition and concatenated the averaged fMRI data across the ‘capsaicin’ and ‘control’ 
conditions or across the ‘chocolate’ and ‘control’ conditions, obtaining two images per participant, 
resulting in a total of 116 images (= 2 images × 58 participants) for each condition. Then, we 
applied principal component analysis (PCA) to the concatenated data to find the minimum 
required number of components to explain > 75% of the total variance. We repeated this 
procedure for each ROI, obtained a total of 96 different PC numbers (= 48 ROIs × 2 conditions), 
and selected the median of the PC numbers, which was 13 PCs (graphical illustration is provided 
in SI Appendix, Fig. S4B and 4C). 
 
Searchlight analysis. To examine the robustness of the region-level information mapping 
results, we repeated the predictive modeling with searchlights. For this, we created a searchlight 
with a radius of five voxels and scanned it throughout the whole brain with a step size of four 
voxels. The number of PCs was the same with the region-level predictive modeling (= 13) for 
consistency. We developed a PCR model for each searchlight region, evaluated the prediction 
performance with LOSO-CV, and added this value to cubes that had one side of four voxels and 
were located at the center of each searchlight across the whole brain with no overlapping voxels 
between cubes. We smoothed the performance maps of pain and pleasure models with a 3-mm 
FWHM Gaussian kernel, and thresholded results based on the bootstrap test with 10,000 
iterations and FDR correction. We conducted the additional searchlight analysis (SI Appendix, 
Fig. S28B) based on the same procedure, but using a searchlight with a radius of three voxels.  
 

http://psychtoolbox.org/
https://github.com/cocoanlab/humanfmri_preproc_bids
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Rank-based subsampling. In developing the intensity and valence models, there was an issue 
in using the concatenated ratings across different conditions—the rating magnitudes for the 
capsaicin condition were greater than those for the chocolate condition, creating a skewness of 
the data distribution and thus introducing a potential bias in the modeling. To minimize the 
potential bias, we subsampled the data with a stratified sampling method to match the numbers of 
positive (i.e., pleasantness) and negative (i.e., unpleasantness) rating data. In more detail, we 
first split the rating data into ten equidistant bins and transformed them into positive and negative 
ranks (i.e., 1, 2, …, 10 and -1, -2, …, -10), except for zeros. We then compared the frequency of 
positive and negative values in a bin-by-bin manner, i.e., the number of data points within the bin 
+1 vs. -1, +2 vs. -2, ..., and matched the frequency by random subsampling of data from the bin 
that had more data. Consequently, the distributions of the positive and negative values became 
symmetric. We developed the intensity and valence models using these subsampled data. 
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Fig. S1. 48 a priori regions-of-interest (ROIs) (related to Figs. 1-2). We selected the 48 brain regions a priori that have been 
reported to be responsive to either pain or pleasure. First, the lateral prefrontal cortex has been known to be related to pain, 
pleasure, and their modulation (5-9). Second, the orbitofrontal and medial prefrontal cortices have been heavily studied in terms of 
their modality-general valence processing (10-14). We also provided the alternative nomenclature of the medial prefrontal regions 
based on their anatomy. Third, the primary somatosensory cortex (S1) and operculum have been reported as pain and pleasure-
responsive regions (15-17). Fourth, the brainstem regions including the nucleus of the solitary tract, rostral ventral medulla, 
parabrachial nucleus, and periaqueductal gray, are known to be part of ascending and descending pain pathways as well as of 
pleasure pathways (18-24). Fifth, the insular cortex has been known to encode pleasantness (25, 26), and particularly, the dorsal 
posterior insula (especially near the parietal operculum) has shown to be correlated with pain intensity (1, 27). Sixth, the ventral 
striatum, nucleus accumbens, ventral pallium, thalamus and hypothalamus are also known to be important for processing pain and 
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pleasure (21, 23, 24, 28). Lastly, the amygdala has been heavily studied due to its response both to pain and pleasure (29-34). We 
used the defined ROIs from previous studies, for brainstem and subcortical regions, ref. (35), for insular regions, ref. (36), and for 
lateral and medial prefrontal cortices (PFC), ref. (37). We used the Harvard-Oxford brain atlas for S1 and opercular regions. 
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Fig. S2. Individual rating trajectories of the capsaicin, chocolate, and control conditions (N = 58; related to Fig. 1). Individual 
rating trajectories of 58 participants from Study 1. 55 out of 58 participants (94.8%) reported their maximum pain levels exceeding 
‘strong’ (0.354) on the gLMS scale in the capsaicin condition, while 25 participants (43.1%) reported their maximum pleasure levels 
over strong (0.354), and 51 participants (87.9%) reported their maximum pleasure levels over moderate (0.172) in the chocolate 
conditions. The purple, yellow, and grey solid lines show the pleasantness-unpleasantness ratings for the capsaicin, chocolate, and 
control conditions, respectively. Transparent squares indicate the durations that each type of stimulus was administrated (1.5 
minutes for capsaicin and 3 minutes for chocolate). 

 
  



 
 

 
 

10 

 

Fig. S3. Stimulus intensity ratings after and during capsaicin stimulation. (A) Overall intensity 
ratings for capsaicin and chocolate fluids obtained after the capsaicin and chocolate runs for Study 1 (N 
= 58, red) and Study 2 (N = 62, blue). The horizontal dashed lines indicate the anchors of the general 
labeled magnitude scale (gLMS (38)) modified for pain intensity ratings. (B) Left: Intermittent ratings of 
pain intensity for every 45 seconds from a previous study (Study 1 from ref. (39), N = 19, green). Right: 
Continuous ratings of pain intensity from a previous study (Study 2 from ref. (40), N = 74, purple). 

 



 
 

 
 

11 

 

 

Fig. S4. Analysis overview of region-level predictive modeling (related to Fig. 2). (A) For the predictive modeling, we used 34-
bin beta images of fMRI data as inputs. To obtain 34-bin beta images, we conducted general linear modeling (GLM) analyses with 
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25-second time-bin regressors convolved with the hemodynamic response function. We also included nuisance covariates (24 head 
motion parameters, linear drift, outlier indicators, and five principal components of white matter and ventricle signals) in the GLM 
analyses. We also averaged the pleasantness-unpleasantness ratings into 34 time-bins. (B) Given that the choice of the number of 
principal components (PCs) can influence the model training, we aimed to use the same number of PCs for all 48 regions. To 
determine the number of PCs, we first averaged all the time-bin data for each condition and concatenated the averaged fMRI data 
across the capsaicin and control conditions or across the chocolate and control conditions, obtaining two images per participant, 
resulting in a total of 116 images (= 2 images × 58 participants) for each condition. Then, we applied principal component analysis 
(PCA) to the concatenated data to find the minimum required number of components to explain > 75% of the total variance. We 
repeated this procedure for each ROI, obtained 96 different PC numbers (= 48 ROIs × 2 conditions), and selected the median of the 
PC numbers, which was 13 components. (C) Using this number of PCs, we applied the principal component regression (PCR) for 
each ROI to predict ratings for either the capsaicin and control conditions or the chocolate and control conditions, based on 
concatenated fMRI data across all the time-bins, conditions, and participants (i.e., 34 bins × 2 runs × 58 participants). We evaluated 
the mean within-individual correlation between predicted and actual outcomes with the leave-one-subject-out cross-validation and 
examined their statistical significance using bootstrap tests with 10,000 iterations. We used the false discovery rate (FDR) q < 0.05 to 
correct for the multiple comparisons. 
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Fig. S5. Temporal Signal-to-Noise Ratio (tSNR) maps across capsaicin, chocolate, and control conditions in Study 1. 
We calculated group-level temporal signal-to-noise ratio (tSNR) by calculating the ratio of the mean and standard deviation of 
voxel-wise fMRI timeseries for each condition and then averaging the resulting individual-level tSNR maps across 
participants. Note that the tSNR of the brainstem regions was lower compared to the other brain regions. 
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Fig. S6. Relationships between the region-level prediction performance of pain prediction models and standard 
deviation of ratings (related to Fig. 2). The plots show the relationship between the within-individual prediction-outcome 
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correlation of region-level pain prediction models and the standard deviation of the pleasantness-unpleasantness ratings 
across the capsaicin and control conditions. Dots and dot colors represent each individual and different ROIs, respectively. 
We found no significant correlations between the prediction performance and the standard deviation of the ratings (r = -0.18-
0.31, all qs > 0.05, FDR corrected, one-sample t-test, two-tailed). Amyg: amygdala, Hypothal: hypothalamus, aINSinf: insula 
anterior inferior, aINSsg: insula anterior short gyrus, mINSsg: insula middle short gyrus, pINSlg: insula posterior long gyrus, 
pINSsg: insula posterior short gyrus, lPFC: lateral prefrontal cortex, mPFC: medial prefrontal cortex, NAc: nucleus 
accumbens, NTS: nucleus of the solitary tract, aOFC: anterior orbitofrontal cortex, pOFC: posterior orbitofrontal cortex, 
aOper: anterior operculum, mOper: middle operculum, pOper: posterior operculum, PAG: periaqueductal gray, PBN: 
parabrachial nucleus, RVM: rostral ventral medulla, S1: primary somatosensory cortex, Thal: thalamus, VeP: ventral pallidum, 
vStr: ventral striatum. 
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Fig. S7. Relationships between the region-level performances of pleasure prediction models and standard deviation 
of ratings (related to Fig. 2). Same as Fig. S6, but the relationship between the within-individual prediction-outcome 
correlation of region-level pleasure prediction models and the standard deviation of the pleasantness-unpleasantness ratings. 
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Again, we found no significant correlations between the prediction performance and the standard deviation of the ratings (r = -
0.18-0.35, all qs > 0.05, FDR corrected, one-sample t-test, two-tailed). Amyg: amygdala, Hypothal: hypothalamus, aINSinf: 
insula anterior inferior, aINSsg: insula anterior short gyrus, mINSsg: insula middle short gyrus, pINSlg: insula posterior long 
gyrus, pINSsg: insula posterior short gyrus, lPFC: lateral prefrontal cortex, mPFC: medial prefrontal cortex, NAc: nucleus 
accumbens, NTS: nucleus of the solitary tract, aOFC: anterior orbitofrontal cortex, pOFC: posterior orbitofrontal cortex, 
aOper: anterior operculum, mOper: middle operculum, pOper: posterior operculum, PAG: periaqueductal gray, PBN: 
parabrachial nucleus, RVM: rostral ventral medulla, S1: primary somatosensory cortex, Thal: thalamus, VeP: ventral pallidum, 
vStr: ventral striatum. 
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Fig. S8. Relationship between the explained variance, region sizes, and the prediction 
performance across 48 ROIs. (related to Fig. 2A) Purple: pain prediction, yellow: pleasure 
prediction. (A) The relationship between the region-wise explained variance of 13 Principal 
Components (PCs) and the prediction performance. We found negative correlations with 
medium effect sizes between them (r = -0.27, P = 0.0647 for the pain prediction, and r = -0.26, 
P = 0.0780 for the pleasure prediction). However, they were not significant, possibly due to the 
small number of regions (nROI = 48), and thus caution should be used in interpreting these 
results. (B) The relationship between the region sizes and the prediction performance. We 
found non-significant correlations between them (r = 0.11, P = 0.4566 for the pain prediction, 
and r = 0.19, P = 0.1911 for the pleasure prediction). After excluding the outlier region, the 
primary somatosensory cortex (S1), the correlations were still non-significant: r = 0.28, P = 
0.0610 for the pain prediction, and r = 0.21, P = 0.1519 for the pleasure prediction. Red circles 
indicate the 7 overlapping brain regions. Amyg: amygdala, aINSinf: insula anterior inferior 
cortex, pOFC: posterior orbitofrontal cortex, lPFC: lateral prefrontal cortex, mPFC: medial 
prefrontal cortex. 
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Fig. S9. Between-individual prediction performances of the region-level models; related to Fig. 2A). (A) We assessed 
how the 48 region-level pain- and pleasure-predictive models predicted the average ratings of each condition across 
individuals. For pain-predictive models, we calculated the prediction-outcome correlation across capsaicin and control 
conditions. For pleasure-predictive models, we calculated the correlation across chocolate and control conditions. We 
highlighted the regions that showed significant within-individual prediction performances (from Fig. 2A) using the same color 
scheme (purple: pain-predictive; yellow: pleasure-predictive; vermilion: overlapping). (B) Scatter plots that show the 
relationship between within- and between-individual prediction performances. Left: 48 region-level pain-predictive models 
(purple: pain-predictive; vermilion: overlapping). Right: 48 region-level pleasure-predictive models (yellow: pleasure-
predictive; vermilion: overlapping). 
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Fig. S10. Explained variances with 13 Principal Components (PCs) across searchlights 
(related to Fig. 2B). (A) The explained variance across searchlight regions based on 13 PCs. 
Top: for capsaicin and control data (range: 65.7-96.7%), bottom: for chocolate and control data 
(range: 65.6-96.8%). (B) The relationship between the explained variance and the prediction 
performance across searchlight regions. Purple: r = 0.03, P = 0.0754 for the pain prediction. 
Yellow: r = -0.01, P = 0.4188 for the pleasure prediction. 
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Fig. S11. Searchlight analysis results with similar numbers of voxels as shown in Fig. 2A (related to Fig. 2B). The 
maps are the same as Fig. 2B but (A) with the same thresholding level as Fig. 2A (q < 0.05, FDR corrected, corresponding to 
uncorrected P < 0.0120), and (B) with the top 12.91% of voxels (corresponding to uncorrected P < 0.05) that are similar 
numbers of voxels shown in Fig. 2A. 
  



 
 

 
 

22 

 

Fig. S12. Region-level predictive modeling for the capsaicin and control conditions with different numbers of 
principal components (related to Fig. 2A). Though we used 13 PCs for main analyses, we also tested different numbers of 
PCs to examine how robust our results were. We varied the number of PCs (8~23) with different levels of explained variance 
(i.e., 65%, 70%, 75%, 80%, and 85%) and examined which brain regions showed significant prediction performance in 
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predicting ratings for the capsaicin and control conditions. The brain maps show regions with significant prediction 
performance thresholded at FDR q < 0.05. 
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Fig. S13. Region-level predictive modeling for the chocolate and control conditions with different numbers of principal 
components (related to Fig. 2A). Same as Fig. S11, but the results of predicting ratings for the chocolate and control conditions.
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Fig. S14. Rank-based subsampling of behavioral ratings. (related to Fig. 3) (A) 
Rating distributions before and after the subsampling process. (B) Distributions of the 
time points excluded by the subsampling process across all iterations of leave-one-
participant-out cross-validation. In the capsaicin condition, time points associated with 
high unpleasantness rating scores were more prone to exclusion during the subsampling 
procedure. 
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Fig. S15. Testing intensity and valence models on the independent dataset (Study 
2, n = 62; related to Fig. 3). We tested whether the intensity and valence models also 
showed the time-course of pattern expression values similar to the overall trajectories of 
ratings, as we observed from the training dataset results. The solid line represents the 
group average, and the shading represents the standard error of the mean. The colored 
boxes indicate the fluid delivery period (purple for capsaicin and yellow for chocolate). 
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Fig. S16. Predictive modeling of affective intensity and valence using original rating values and the whole 48 ROIs (related 
to Fig. 3). (A) When we used the original rating values as the outcome, instead of the rank values, the mean within-individual 
prediction-outcome correlation for the intensity model was r = 0.27, P = 2.22 × 10-16, bootstrap test, two-tailed, mean of mean 
squared error (mse) = 0.0395, and for the valence model, r = 0.11, P = 7.62 × 10-4, bootstrap test, two-tailed, mean mse = 0.0651. 
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(B) When we used 48 ROIs instead of 7 ROIs, the mean within-individual prediction-outcome correlation for the intensity model was r 
= 0.25, P < 2.22 × 10-16, bootstrap test, two-tailed, mean mse = 13.225 and for the valence model, r = 0.09, P = 0.0232, bootstrap 
test, two-tailed, mean mse = 24.522. 
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Fig. S17. A mask of 61 brain regions used for predictive modeling of the affective intensity and valence (related to Fig. 3). A 
spatial mask of 61 brain regions from the 265-region whole-brain parcellation combining Schaefer cortical atlas (4) with additional 
subcortical and cerebellar regions from the Brainnetome atlas (41) and brainstem regions (42, 43). We excluded the brain regions 
that had overlapping voxels more than 1% with the 48 ROIs and the visual network (44). 
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Fig. S18. Unthresholded weight maps across 3 intensity models. (related to Fig. 3) The unthresholded weights of the intensity 
models based on (A) the original 7 overlapping brain regions, (B) 11 pain-predictive brain regions, (C) 11 pleasure-predictive brain 
regions, and (D) all 15 significant brain regions. The spatial correlation of the predictive weights within the 7 overlapping brain regions 
between (A) and (B) was r = 0.89, P = 2.22 × 10-16, that between (A) and (C) was r = 0.90, P = 2.22 × 10-16, and that between (A) 
and (D) was r = 0.83, P = 2.22 × 10-16. 
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Fig. S19. Thresholded weight maps across 3 intensity models. (related to Fig. 3) Thresholded weights of the intensity models 
based on (A) the original 7 overlapping brain regions (FDR q < 0.05), (B) 11 pain-predictive brain regions (Bonferroni p < 0.05), (C) 
11 pleasure-predictive brain regions (Bonferroni p < 0.05), and (D) all 15 significant brain regions (Bonferroni p < 0.05). 
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Fig. S20. The Support Vector Machine (SVM)-based classification model distinguishing the chocolate and capsaicin 
conditions based on the 7 overlapping brain regions. (A) The forced-choice test result based on leave-one-participant-out cross-
validation. Each line connecting dots represents an individual participant’s paired data (red line: correct classification, blue line: 
incorrect classification). P-value was based on a binomial test, two-tailed. (B) The unthresholded weights of the SVM model 
classifying capsaicin versus chocolate conditions and the original PCR-based valence model. The spatial correlation between these 
predictive weights was r = 0.41, P = 2.22×10-16. 
  



 
 

 
 

34 

 

Fig. S21. Unthresholded predictive weights and their P-values of intensity and valence models (related to Fig. 3). (A-B) 
Unthresholded predictive weights of (A) the intensity model and (B) the valence model. (C-E) We obtained the p-values from 
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bootstrap tests with 10,000 iterations. Negative logarithmic of p-values of the unthresholded predictive weights of the (C) intensity 
model and (D) the valence model. (E) The relative importance of the voxels for the intensity versus valence models, defined as the 
difference of negative logarithmic of p-values of the unthresholded weights between the two models. Here we defined the importance 
of the voxels as the negative logarithmic of p-values to base 10 from bootstrap tests. The brain regions with lower p-values for the 
intensity model were colored green, and the brain regions with lower p-values for the valence model were colored red. 
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Fig. S22. Large-scale cortical functional networks. (related to Fig. 5) The 7 cortical functional 
networks from the Buckner group (44). 
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Fig. S23. Functional connectivity maps for the intensity and valence models including both positive and negative 
correlations (related to Fig. 5). (A) Left: Thresholded functional connectivity maps of intensity and valence models including both 
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positive and negative correlation values (FDR q < 0.05, one-sample t-test, two-tailed). We excluded the brain coverage of the 
predictive models to focus on their relationship with other brain regions. Right: The pie charts showed the proportions of voxels that 
survived after thresholding given each large-scale functional brain network. The radius of each pie chart is proportional to the total 
number of voxels; the more voxels in each brain network survive, the bigger the pie chart is. The actual numbers of all survived 
voxels in each brain network are indicated in parentheses. (B) A conjunction map of the intensity and valence model-based 
connectivity maps; green for the intensity model and red for the valence model. 
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Fig. S24. Results of conventional seed-based functional connectivity analysis (related to Fig. 5). These plots show the group-
level seed-based functional connectivity maps. We used the voxels colored in white with significant (at FDR q < 0.05, two-tailed, from 
bootstrap tests with 10,000 iterations) positive predictive weights from the intensity and valence models as a seed mask. Then, the 
average activation values across the mask were used to calculate functional connectivity with the control condition data. We showed 
only positive connectivity thresholded at Bonferroni-corrected p < 0.05 (voxel-wise p < 2.51 × 10-7). 
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Fig. S25. Functional connectivity maps for the intensity and valence models on the independent dataset (Study 2, N = 62; 
related to Fig. 5). We obtained the functional connectivity using the pattern expression values of intensity and valence models as 
seeds in the independent dataset (Study 2, N = 62). The functional connectivity was calculated using the control condition data. (A) 
Thresholded functional connectivity patterns (FDR q < 0.05, one-sample t-test, one-tailed). (B) Left: Conjunction maps with different 
colors indicating the results of the different models—green for the intensity model and red for the valence model. Right: A radar plot 
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showing the posterior probability of the significant voxels within each large-scale functional network given the total number of voxels 
within each network. 
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Fig. S26. Functional connectivity maps for the intensity and valence models on the independent dataset (Study 2, N = 62; 
related to Fig. 5). Same as Fig. S25 but showing similar numbers of significant voxels as in Fig. 5. (A) Thresholded functional 
connectivity patterns with the top 0.6%ile (1,190 voxels) in the intensity and top 1.4%ile (2,776 voxels) in the valence. (B) Left: 
Conjunction maps with different colors indicating the results of the different models—green for the intensity model and red for the 
valence model. Right: A radar plot showing the posterior probability of the significant voxels within each large-scale functional 
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network given the total number of voxels within each network. Compared to Fig. S25, the functional connectivity for the intensity 
model showed stronger connection to the somatomotor network than the ventral attention network. 
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Fig. S27. Relationships between the participants’ general sensitivity scores on the (un)pleasantness ratings for a variety of 
tastes and sensory stimuli (38, 45) and the overall (un)pleasantness ratings for capsaicin or chocolate stimuli after the fMRI 
experiments. We examined the relationships between participants’ general sensitivity scores on various sensory stimuli before the 
fMRI experiments and overall (un)pleasantness ratings for capsaicin and chocolate stimuli after the fMRI experiments, across (A) 
Study 1 and (B) Study 2. 
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Fig. S28. Information mapping results with Schaefer parcellations (4) and smaller searchlights (related to Fig. 2B). (A) Brain 
regions that showed significant prediction performances (FDR q < 0.05) for the information mapping of pain and pleasure, using 265-
region whole-brain parcellation combining Schaefer cortical atlas (4) with additional subcortical and cerebellum regions from the 
Brainnetome atlas (41) and brainstem regions (42, 43). (B) Searchlight voxels that showed significant prediction performances (FDR 
q < 0.05) with a reduced size (radius = 3 voxels; originally 5 voxels as in Fig. 2B). 
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Fig. S29. Univariate GLM analysis using TR-level fMRI and pleasantness-
unpleasantness ratings (related to Fig. 2). (A-B) To examine which voxels were 
correlated with the ratings during the capsaicin versus chocolate conditions, we 
conducted a univariate general linear modeling (GLM) analysis using TR-level fMRI and 
behavioral data. We used the TR-level pleasantness-unpleasantness ratings convolved 
with the canonical hemodynamic response function as a regressor for (A) the ‘capsaicin’ 
and (B) the ‘chocolate’ conditions. We also included the nuisance covariates (24 head 
motion parameters, linear drift, outlier indicators, and five principal components of white 
matter and ventricle signals) to remove nuisance effects in each fMRI condition. We then 
conducted one-sample t-tests for the beta coefficients with FDR correction for multiple 
comparisons. 
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Fig. S30. ROI-level predictive modeling results based on the within-individual 
variability across 48 ROIs (related to Fig. 2). We trained individualized models and 
obtained the model weights for each individual. The prediction performance was 
estimated with leave-one-participant-out cross-validation, in which we averaged all 
models except for one individual and tested the averaged model on the remaining 
individual (we followed the modeling approach described in ref. (46)). We used the same 
48 ROIs as in Fig. 1C. 
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Fig. S31. Comparing patterns of pleasantness-unpleasantness ratings between 
Studies 1 and 2 (related to Figs. 1 and 2). The solid lines indicate group averages of 
pain and pleasure ratings (red for Study 1, blue for Study 2), and the shading indicates 
standard errors of the mean (s.e.m.). Purple boxes: capsaicin delivery, yellow boxes: 
chocolate delivery. Green boxes and dots indicate the time-bins that showed significant 
differences in behavioral ratings between Studies 1 and 2 (Bonferroni p < 0.05).
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Table S1. Predicting affective intensity using individual 7 overlapping brain regions (related to Fig. 3). 

 

 

Note. The procedure of predictive modeling using each of the 7 brain regions was identical to that of using all 7 brain regions. The number of 
PCs that explained 75% of the total variance across 7 brain regions was 31, also an identical procedure used in the region-level information 
mapping. We trained the predictive models for each brain region by subsampling and transforming the individual rating data into ranks 
(±1~10; see Materials and Methods). lPFC: lateral prefrontal cortex, mPFC: medial prefrontal cortex, OFC: orbitofrontal cortex. mse: mean 
squared error. *FDR-corrected q < 0.05, bootstrap test, two-tailed. 
  

Brain regions 
All conditions  ‘Capsaicin’ condition ‘Chocolate’ condition 

mean r P mean mse  mean r P mean mse  mean r P mean mse 

Amygdala 0.15 2.24 × 10−6* 13.545 
 

0.20 0.0007* 20.882 
 

0.17 1.22 × 10−5* 15.311 

Insula anterior  
inferior cortex 0.18 9.03 × 10−13* 13.402  0.23 8.01 × 10−6* 20.946  0.15 0.0004* 15.123 

lPFC05 0.11 0.0002* 13.668  0.24 0.0001* 20.947  0.04 0.2747 15.644 

lPFC09 0.07 0.0249 13.729  0.10 0.3723 20.870  0.002 0.8506 15.704 

lPFC14 0.13 1.25 × 10−5* 13.589  0.16 0.0028* 20.802  0.07 0.0881 15.327 

mPFC04 0.11 0.0002* 13.710  0.16 0.0050 21.149  0.09 0.0312 15.495 

Posterior OFC 0.15 8.58 × 10−7* 13.444  0.24 2.56 × 10−5* 20.977  0.17 0.0006 15.000 
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Table S2. Predicting affective valence using individual 7 overlapping brain regions (related to Fig. 3). 

 

 

Note. Same as Table S1, but the results of affective valence prediction. lPFC: lateral prefrontal cortex, mPFC: medial prefrontal cortex, 
OFC: orbitofrontal cortex. mse: mean squared error. *FDR-corrected q < 0.05, bootstrap test, two-tailed. 
 
  

Brain regions 
All conditions  ‘Capsaicin’ condition ‘Chocolate’ condition 

mean r P mean mse  mean r P mean mse  mean r P mean mse 

Amygdala 0.05 0.1907 23.927 
 

0.03 0.5882 37.414 
 

0.04 0.2708 27.179 

Insula anterior  
inferior cortex 0.07 0.0577 24.031  -0.03 0.4457 37.070  0.07 0.1296 26.903 

lPFC05 0.12 0.0002* 23.743  0.19 0.0008* 35.975  0.04 0.4761 27.205 

lPFC09 0.12 0.0020* 23.604  0.21 0.0005* 35.917  -0.01 0.7183 26.541 

lPFC14 0.10 0.0171 23.827  0.14 0.0099 36.395  0.05 0.2306 26.858 

mPFC04 0.06 0.0851 23.829  0.02 0.6802 36.926  0.04 0.3780 26.869 

Posterior OFC 0.06 0.0773 23.890  0.08 0.5199 36.761  0.06 0.1815 27.335 
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Table S3. Numbers of voxels and the explained variance across 48 ROIs (related to Fig. 2). 

 

Region 
names 

  
Number 
of voxels 

  Explained variance (%) 
    8 PCs   10 PCs   13 PCs   17 PCs   23 PCs 

    Capsaicin 
& Control 

Chocolate 
& Control   Capsaicin 

& Control 
Chocolate 
& Control   Capsaicin 

& Control 
Chocolate 
& Control   Capsaicin 

& Control 
Chocolate 
& Control   Capsaicin 

& Control 
Chocolate 
& Control 

Amyg   1363   53  55    58  60    64  65    70  71    77  78  
Hypothal   423   63  62    69  68    76  75    82  82    88  88  
aINSinf   1825   53  52    57  56    62  61    67  67    74  74  
aINSlg   1584   47  50    51  54    57  60    63  66    70  73  
aINSsg   1642   53  52    57  56    62  61    67  67    74  74  
mINSsg   865   59  59    64  64    69  70    75  75    81  81  
pINSlg   1931   44  47    49  51    54  56    60  62    67  69  
pINSsg   1107   57  57    61  61    67  67    72  73    79  79  
lPFC01   2328   64  64    69  68    74  73    78  78    84  84  
lPFC02   2056   71  68    74  73    79  77    83  82    87  86  
lPFC03   1495   67  68    72  72    76  76    81  81    85  86  
lPFC04   1380   66  64    70  69    75  74    80  79    85  85  
lPFC05   2394   62  65    66  68    71  73    76  78    81  83  
lPFC06   819   77  77    81  81    85  85    88  89    92  92  
lPFC07   1530   66  65    70  69    75  74    80  79    85  85  
lPFC08   1732   68  68    72  72    77  76    81  81    86  86  
lPFC09   1709   67  65    71  69    76  74    80  79    85  84  
lPFC10   1578   71  70    74  74    79  79    83  83    87  87  
lPFC11   1259   72  72    75  76    80  80    84  84    88  88  
lPFC12   932   77  76    81  80    84  84    87  87    91  91  
lPFC13   1522   68  66    71  70    76  75    80  80    85  84  
lPFC14   1379   69  69    73  73    77  78    82  82    86  87  
mPFC01   441   81  84    85  87    88  90    92  93    95  95  
mPFC02   1245   68  65    72  70    76  74    80  79    85  84  
mPFC03   1401   65  68    69  71    74  76    78  80    83  85  
mPFC04   2274   56  57    59  60    64  65    69  70    75  76  
mPFC05   688   79  79    82  83    86  86    89  89    92  93  
mPFC06   1842   72  69    75  73    79  77    83  81    87  86  
mPFC07   1039   64  65    68  69    73  74    78  79    83  84  
mPFC08   553   79  81    82  84    86  88    90  91    94  94  
mPFC09   488   85  87    88  90    91  92    93  94    96  96  
mPFC10   393   83  85    87  88    90  91    93  94    96  96  
mPFC11   1300   71  70    75  74    79  78    83  82    87  87  
mPFC12   880   71  72    75  76    79  80    84  85    89  89  
NAc   397   68  67    73  72    79  78    84  84    90  90  
NTS   154   88  87    90  90    93  93    96  96    98  98  
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aOFC   4513   49  50    53  54    58  59    64  64    70  71  
pOFC   3452   51  50    55  53    59  59    65  64    71  70  
aOper   776   66  66    70  71    75  76    80  81    86  86  
mOper   2339   60  62    64  65    68  69    73  74    78  79  
pOper   1289   67  69    70  72    75  77    80  81    85  86  
PAG   337   68  68    73  73    80  80    86  85    91  91  
PBN   189   72  74    78  79    84  84    89  90    94  94  
RVM   339   66  67    72  73    78  79    84  85    90  91  
S1   8982   62  62    65  65    69  69    74  73    78  78  
Thal   2639   39  43    43  47    49  52    55  58    63  66  
VeP   103   83  83    88  88    92  92    95  95    98  98  
vStr   1220   50  48    55  53    61  59    67  65    75  73  

 

Note. The 15 significant brain regions are highlighted using the same color scheme as used in Fig. 2A (purple: pain-predictive; yellow: 
pleasure-predictive; vermilion: overlapping). Amyg: amygdala, Hypothal: hypothalamus, aINSinf: insula anterior inferior cortex, aINSlg: insula 
anterior long gyrus, aINSsg: insula anterior short gyrus, mINSsg: insula middle short gyrus, pINSlg: insula posterior long gyrus, pINSsg: 
insula posterior short gyrus, lPFC: lateral prefrontal cortex, mPFC: medial prefrontal cortex, NAc: nucleus accumbens, NTS: nucleus of the 
solitary tract, aOFC: anterior orbitofrontal cortex, pOFC: posterior orbitofrontal cortex, aOper: anterior operculum, mOper: middle operculum, 
pOper: posterior operculum, PAG: periaqueductal gray, PBN: parabrachial nucleus, RVM: rostral ventral medulla, S1: primary 
somatosensory cortex, Thal: thalamus, VeP: ventral pallidum, vStr: ventral striatum. 
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Table S4. Results of information mapping analysis after excluding participants who had some issues in their rating patterns 
(related to Fig. 2). 

 

Region names 
  Pain prediction   Pleasure prediction 

  Mean r P Mean mse  Mean r P Mean mse 

Overlapping         
Amygdala   0.14  0.0017*  0.0498    0.11  0.0096*  0.0202  
Insula anterior  
inferior cortex    0.17  3.48×10-5* 0.0493    0.13  0.0023*  0.0202  

lPFC05   0.17  7.96×10-6* 0.0489    0.11  0.0039*  0.0200  

lPFC09   0.13  0.0009*  0.0491    0.12  0.0025*  0.0201  

lPFC14   0.14  0.0006*  0.0494    0.08  0.0564  0.0204  

mPFC04   0.15  0.0001*  0.0495    0.10  0.0005*  0.0201  

Posterior OFC   0.21  6.06×10-7* 0.0486    0.09  0.0370  0.0203  

Pain-predictive         
lPFC03   0.06  0.0906  0.0509    0.06  0.0802  0.0204  

lPFC13   0.12  0.0035*  0.0494    0.08  0.0677  0.0202  

mPFC07   0.17  1.40×10-5* 0.0496    0.09  0.0138  0.0206  

Anterior OFC   0.15  0.0006*  0.0499    0.08  0.0205  0.0201  

Pleasure-predictive         
Insula anterior  
long gyrus   0.06  0.0906  0.0513    0.12  0.0114*  0.0204  

Insula posterior  
long gyrus   0.04  0.3914  0.0518    0.12  0.0012* 0.0204  

lPFC11   0.09  0.0308  0.0506    0.15  4.08×10-5*  0.0203  

mPFC01   0.004  0.9316  0.0513    0.07  0.0867  0.0203  
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Note. We excluded participants #005, 026, 029, 034, and 048 for pain prediction, and excluded participants #034, 039, 042, 048, and 056 for 
pleasure prediction. The procedure of information mapping was identical to that used for Fig. 2A. The number of PCs that explained 75% of 
the total variance across 48 brain regions based on 53 participants was 13. Prediction performances of brain regions relevant to either pain 
or pleasure prediction are highlighted in bold. Amyg: amygdala, OFC: orbitofrontal cortex, lPFC: lateral prefrontal cortex, mPFC: medial 
prefrontal cortex. *FDR q < 0.05, bootstrap test, two-tailed.  
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Table S5. Maximum levels of pleasantness-unpleasantness ratings of chocolate 
conditions in Studies 1 and 2 (related to Figs. 1 and 2). 

 

Labels on gLMS   Study 1 (N [%])   Study 2 (N [%]) 

Very strong (0.533)   11 [19.0%]   6 [9.7%] 

Strong (0.354)   25 [43.1%]   24 [38.7%] 

Moderate (0.172)   51 [87.9%]   48 [77.4%] 

Weak (0.061)   55 [94.8%]   57 [91.9%] 

 

Note. gLMS: general Labels Magnitude Scale. Study 1: n = 58, Study 2: n = 62. 
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