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Separate neural representations for physical
pain and social rejection
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Current theories suggest that physical pain and social rejection share common neural

mechanisms, largely by virtue of overlapping functional magnetic resonance imaging (fMRI)

activity. Here we challenge this notion by identifying distinct multivariate fMRI patterns

unique to pain and rejection. Sixty participants experience painful heat and warmth and view

photos of ex-partners and friends on separate trials. FMRI pattern classifiers discriminate pain

and rejection from their respective control conditions in out-of-sample individuals with 92%

and 80% accuracy. The rejection classifier performs at chance on pain, and vice versa. Pain-

and rejection-related representations are uncorrelated within regions thought to encode pain

affect (for example, dorsal anterior cingulate) and show distinct functional connectivity with

other regions in a separate resting-state data set (N¼ 91). These findings demonstrate that

separate representations underlie pain and rejection despite common fMRI activity at the

gross anatomical level. Rather than co-opting pain circuitry, rejection involves distinct

affective representations in humans.
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The neural and psychological mechanisms of social
rejection are the subject of intense study1–5; rejection is
experienced as painful, and is an important risk factor

for physical and mental illnesses6,7 and other functional
impairments8. How rejection experiences are represented in the
brain has great theoretical significance for understanding social
and emotion processes9 and translational implications for
assessing and treating medical conditions influenced by social
factors10,11.

The ‘shared representation’ theory of social pain, the most
influential theory of adverse social experience, suggests that
rejection and related experiences piggyback on brain systems
evolved to represent physical pain1–3. Experiences of social
rejection and physical pain indeed have many common
psychological and biological attributes. For example, both are
often described using very similar words1 and involve similar
biological regulatory systems, such as endogenous opioids and
oxytocin12,13. Critically, recent functional magnetic resonance
imaging (fMRI) findings suggest that physical pain and social
rejection activate common brain regions. These findings have
been interpreted as evidence that pain and rejection share
common brain representations2,4,5. Although the ‘shared
representation’ theory does not claim that the neural systems
underlying pain and rejection are exactly the same, it claims that
shared representations exist in the brain regions thought to
represent affective and sensory information in a modality-
independent way. These regions include those important for
representing affective distress across many conditions (for
example, the dorsal anterior cingulate [dACC] and anterior
insula [aINS])2,14–16 and those that represent somatosensory
information more specifically (for example, dorsal-posterior
insula [dpINS] and S2)4,5.

However, overlapping fMRI activity within these regions does
not necessarily imply shared representations at all levels of analysis
(for example, neuronal population codes)17–19. For example,
dACC and aINS show similar fMRI activity during the
experience of positive and negative emotions20 and also during
diverse sensory and cognitive processes that have little to do with
pain or rejection21,22. Thus, fMRI-based summaries of these
regions often focus on potential common functions, such as
surprise23 or salience24. However, the dACC contains multiple,
functionally specific subpopulations of neurons25, including
nociceptive-specific ones26 and those that code for various
motivationally relevant events, such as reward expectancy27 or
predicted cognitive demands28. Even if the fMRI activity evoked by
pain, rejection and other states is overlapping, their underlying
neural representations may be non-overlapping. Thus, the question
of whether representations of pain and rejection within dACC,
aINS, dpINS, and S2 are common or distinct is unresolved.

In this paper, we take a fresh look at the question of shared
neural representations for pain and rejection, using multivariate
pattern analysis (MVPA)29 combined with a rigorous inferential
logic, the ‘separate modifiability’ criterion30, for assessing shared
versus distinct representations at the fMRI multivariate pattern
level. The ‘separate modifiability’ criterion requires two different
measures (here, two fMRI multivariate patterns) to be separately
modulated by two manipulations without cross-influences. For
example, if two fMRI multivariate patterns can be identified such
that one pattern responds to manipulations of pain but not
rejection, and the other pattern responds to rejection but not
pain, the patterns are separately modifiable30. This criterion is
well suited for ruling out a single-process account of function,
such as intensity or salience. The rationale for this is laid out in
detail in the Discussion and ref. 30, but briefly, if two brain
measures are separately modified by the two manipulations, then
no single process is sufficient to account for the results. Therefore,

separate modifiability can provide strong evidence for the
existence of distinct brain representations for pain and rejection.

We examined the following three specific questions in this
paper: (i) whether global and local multivariate fMRI patterns
that are separately modifiable by pain and rejection can be
identified (aim 1), (ii) whether or not those multivariate patterns
for pain and rejection are correlated within and across regions
(aim 2) and (iii) whether the multivariate patterns for pain and
rejection engage distinct functional brain networks (aim 3). Even
if standard fMRI activation is insufficient to capture activity in
distinct neural circuits, multivariate patterns of fMRI activity may
be able to capture neuronal population codes specific to distinct
sensory and affective experiences17,31,32. Thus, it may still be
possible to identify multivariate patterns that respond only to
manipulations of pain or rejection, and thus demonstrate separate
modifiability of the two processes within and across brain regions.

In Study 1, 60 participants were scanned with fMRI while they
experienced physical pain and social rejection stimuli on separate
trials (Fig. 1a). We recruited individuals who recently experienced
an unwanted break-up with their romantic partners and felt
intensely rejected. In the social rejection task, in order to elicit
emotions of social rejection, participants viewed a headshot
photograph of their ex-partner (‘Ex-partner’ condition) or a close
friend (‘Friend’ condition). In the somatic pain task, we delivered
painful heat (‘Heat-pain’ condition) or warm heat (‘Warmth’
condition) to the left volar forearm. Data from part of this sample
(N¼ 40) were previously published4,32, but the analyses we
performed here are qualitatively different from those in previous
reports; here we focus on identifying an fMRI multivariate
pattern for rejection and assessing its relationship with somatic
pain representations (see Discussion for additional details).

Through a series of analyses, we challenge the ‘shared
representation’ theory by identifying whole-brain fMRI multi-
variate patterns separately modifiable by pain and rejection. In
addition to separate modifiability at the whole-brain level,
multivariate patterns coding for pain and rejection within the
dACC, aINS, dpINS, and S2 are uncorrelated and separately
modifiable. Resting-state connectivity analyses on a separate
sample (Study 2, N¼ 91) reveal that two multivariate patterns for
pain and rejection encoded in the same set of dACC voxels have
distinct functional connectivity patterns with the rest of the brain.
These findings suggest that pain and rejection are distinct types of
affect, with independent representations co-localized in similar
gross anatomical regions.

Results
Behavioural results. In Study 1, both the Heat-pain and
Ex-partner conditions elicited substantial negative affect on
numerical rating scales (MHeat-pain¼ 4.07±0.55 (s.d.);
MEx-partner¼ 4.28±0.39 on a five-point scale), compared with
their respective control (Friend and Warmth) conditions,
tHeat-pain versus Warmth (59)¼ 29.07, Po0.001, tEx-partner versus Friend
(59)¼ 28.37, Po0.001. Pain and rejection manipulations elicited
equally strong increases in negative affect (for Heat-pain versus
Ex-partner, b̂¼ 0:066, t (118)¼ 0.26, P¼ 0.80).

Participants provided verbal descriptions of their experiences
while viewing their ex-partner’s photo after the experiment.
A word frequency analysis of these descriptions using the
LIWC2007 software33 revealed that, as expected, the photos
elicited painful emotions: 9.7% of all negative emotion words
provided by participants were pain-related words (for example,
painful, hurt and so on), with 23% of participants using at least
one pain-related word. The photos also evoked other negative
emotions, including sadness (for example, sad, cry; 40.3% of
negative emotion words used, and 85% of participants), anger
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(for example, angry, mad; 23.3% of negative emotion words, and
97% of participants) and stress (for example, upset, confused;
14.2% of negative emotion words, and 77% of participants).

Thus, rejection-related stimuli did not only evoke ‘painful’
experiences, but they also elicited multiple intense, negative
emotions.
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Figure 2 | Separate modifiability of fMRI pattern-based classifiers for pain and rejection. (a) Cross-validated (leave-one-subject-out) accuracy in
two-choice classification tests (n¼ 59). The results demonstrated separate modifiability (each can be changed independent of the other) of the fMRI
pattern-based classifiers. The dashed line indicates the chance level (50%), and the error bars represent standard error of the mean across subjects.
(b) The distributed fMRI pattern maps in which voxel activity reliably contributes to the discrimination of pain (top panel) and rejection (bottom panel)
from other conditions. The maps show thresholded voxel weights based on bootstrapping (10,000 samples) of SVMs for display only; all weights were
used in classification. r between two pattern maps denotes Pearson’s correlation of voxel weights. ***Po0.001, binomial test.
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Figure 1 | Behavioural results. (a) Experimental paradigm. The social rejection and somatic pain tasks each consisted of two consecutively administered
runs of eight trials (that is, 16 total trials). The order of the two tasks was counterbalanced across participants. (i) Social rejection task: each trial
in the social rejection task lasted 45 s and began with a 7-s fixation cross. Subsequently, participants saw a headshot photograph of their ex-partner
(‘Ex-partner’ condition) or a close friend (‘Friend’ condition) for 15 s. A cue-phrase beneath each photo directed participants to think about how
they felt during their break-up experience with their ex-partner or a specific positive experience with their friend. Subsequently, participants rated how they
felt using a five-point scale. To reduce carryover effects between trials, participants then performed an 18-s visuo-spatial control task in which they
saw an arrow pointing left or right and were asked to indicate which direction the arrow was pointing. Ex-partner versus Friend trials were randomly
presented with the constraint that no trial repeated consecutively more than twice. (ii) Somatic pain task: the structure of somatic pain trials was identical
to rejection trials with the following exceptions. During the 15-s thermal stimulation period, participants viewed a fixation cross and focused on the
sensations they experienced during a hot (painful) or warm (non-painful) stimulus that was delivered (1.5-s temperature ramp up/down, 12 s at peak
temperature) to their left volar forearm at temperatures calibrated for each person (for details, see Methods). They then rated the pain they experienced
using a five-point scale. (b) Behavioural data from trial-by-trial pain and emotion rating (n¼ 60, eight trials for each condition). Error bars represent
within-subject standard errors of the mean (s.e.m.). (c) Relative word frequency for negative emotion word categories among negative emotional
words that participants used to describe the stream of thoughts while they were viewing the ex-partner’s photo in the scanner after the fMRI scanning.
We used the Linguistic Inquiry and Word Count dictionary33 (LIWC) to categorize emotional words. ***Po0.001, multi-level generalized linear model.
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Separate modifiability of fMRI pattern-based classifiers. To
identify multivariate patterns of fMRI activity that are separately
modifiable by pain and rejection (aim 1), we trained linear sup-
port vector machines (SVMs)34 to discriminate Heat-pain versus
other conditions and Ex-partner versus other conditions with a
leave-one-subject-out cross-validation35. We used whole-brain
activation parametric maps that were masked by an a priori meta-
analytic map associated with ‘pain’, ‘emotion’ and ‘social’22 (see
Methods and Supplementary Fig. 1). In order to identify pain-
and rejection-specific activation patterns if they exist, it is
desirable to train the classifier on Heat-pain versus all other
conditions (including Ex-partner) or Ex-partner versus others
(including Heat-pain) rather than Heat-pain versus Warmth and
Ex-partner versus Friend because the latter contrasts could
capture signal from a single process, such as salience or general
aversiveness. With the identified patterns for pain and rejection,
we tested for separate modifiability by testing them on out-of-
sample participants for Heat-Pain versus Ex-partner or Ex-
Partner versus Heat-Pain, Heat-Pain versus Warmth and Ex-
partner versus Friend contrasts.

As shown in Fig. 2a and Supplementary Fig. 2, the pain
classifier discriminated Heat-pain versus Ex-partner with 100%
accuracy in the test participants (95% confidence interval (CI):
100–100%, Po0.00001) and Heat-pain versus Warmth with 92%
accuracy (CI: 84–99%, Po0.00001). However, it performed at
chance for Ex-partner versus Friend (accuracy¼ 59%, with 95%
CI: 47–72%, P¼ 0.193), demonstrating responsivity only to
somatic pain. The rejection classifier discriminated Ex-partner
versus Heat-pain with 88% accuracy (95% CI: 80–96%,
Po0.00001) and Ex-partner versus Friend with 80% accuracy
(95% CI: 69–90%, Po0.00001). However, it performed at chance
for Heat-pain versus Warmth (accuracy¼ 59%, with 95%
CI: 47–72%, P¼ 0.193), demonstrating responsivity only to
rejection. These findings provide the first evidence for separate
modifiability of whole-brain fMRI multivariate patterns for pain
and rejection, suggesting the existence of functionally indepen-
dent neural representations for pain and rejection.

Figure 2b displays the classifier voxel weights that reliably
contribute to the classification of pain and rejection, respectively,
based on bootstrap tests with 10,000 iterations (thresholded at
Po0.001 uncorrected for display only; all voxel weights were
used in classification). Heat-pain versus Warmth was predicted
by activation in many regions associated with nociceptive
processing and endogenous pain control36,37, such as right
(contralateral) dpINS, bilateral S2, medial thalamus and
periaqueductal gray (PAG). Ex-partner versus Friend was
predicted by increased activity in dorsomedial prefrontal cortex
(dmPFC), right temporal parietal junction (TPJ) and precuneus,
which are reliably associated with mentalizing about others38,39,
and several other regions associated with negative emotion and its
regulation20,40,41, including thalamus, supplementary motor area
and inferior frontal gyrus.

To statistically compare the two pattern maps for pain and
rejection (aims 2, 3), we conducted a bootstrap test with 10,000
iterations: for each iteration, we trained linear SVMs for pain and
rejection and calculated (i) their spatial correlation across voxel
weights and (ii) the difference weight values at each voxel.
The two pattern classifiers were uncorrelated with each other,
r¼ " 0.04, P¼ 0.28, and showed different weights in the
following brain regions: Activation was more strongly predictive
of pain in the supramarginal gyrus, middle insula, dpINS and
ventral insula, PAG, amygdala and thalamus (warm colours in
Fig. 3a, qo0.05, false discovery rate [FDR] corrected; for the full
list of the regions, see Supplementary Table 1). Activation was
more strongly predictive of social rejection in dmPFC, right
inferior frontal gyrus, ventromedial prefrontal cortex, perigenual

anterior cingulate cortex, TPJ and precuneus (cool colours in
Fig. 3a). The significant weight differences in these regions were
mainly driven by significant positive weights for pain or rejection
(Fig. 3b), but in some regions by significant negative weights; in
particular, by negative weights for rejection in amygdala and
thalamus.

Multi-voxel pattern similarity analysis. Pain and rejection-
related patterns included significantly different weights in some
known targets of ascending nociceptive pathways42, including
dpINS, thalamus and PAG, but not others (for example, dACC,
aINS and S2). All of these regions were activated in standard
general linear model (GLM) analyses by both Heat-pain
versus Warmth and Ex-partner versus Friend contrasts
(Supplementary Fig. 3). Common GLM activations such as
these results have been interpreted in terms of shared neural
representations between pain and rejection in previous papers2–4.

For this reason, and to identify shared local representations if
they exist (aim 2), we examined whether the individual patterns
of fMRI activity within these nociceptive pain-processing regions
were similar or different for each participant with multi-voxel
pattern similarity analysis17,43. The pattern correlations within
dACC, aINS, S2 and dpINS were calculated for each individual
participant (i) between the SVM weights for pain and rejection
across voxels, and (ii) between the first-level contrast activation
maps for Heat-pain versus Warmth and Ex-partner versus Friend
(see Supplementary Fig. 4 for the detailed analysis procedure).
95% CIs and P-values were calculated based on bootstrap tests
with 10,000 iterations (for the correlations between SVM weights)
or based on group statistics (for the correlation between contrast
images).

Pattern similarity analysis results supported the conclusion that
pain- and rejection-related representations within pain-proces-
sing regions were distinct (Fig. 4a). No core pain-processing
regions showed a significant correlation between (i) SVM
classifier weights for pain and rejection (Fig. 4b, left) or (ii)
fMRI contrast images for pain and rejection (Fig. 4b, right). Use
of rank correlations yielded the same results.

Cross-classification test results with local classifiers. Although
pain- and rejection-related fMRI patterns were uncorrelated
within core pain-processing regions, this does not imply that
there are no shared representations anywhere in the brain. To
identify regions with shared and non-shared local patterns
between pain and rejection (aims 1, 2), we conducted ‘cross-
classification’ tests using a local pattern-based classification
approach (cf. ref. 44). The cross-classification tests consisted of
three steps. (i) Local regions were defined using spherical
searchlight regions around centre voxels45 or using functional
parcellations46. (ii) Multivariate pattern classifiers using a defined
local region were trained separately for Heat-Pain versus Warmth
and Ex-partner versus Friend with leave-one-subject-out cross-
validation. In this analysis, training classifiers on one condition
versus its control condition is more desirable than the one
condition versus all other conditions approach because here we
sought to identify ‘shared’ local representations across pain and
rejection, not specific and unique representations of pain and
rejection. (iii) With the identified local patterns for pain and
rejection, we tested for separate modifiability by applying them to
out-of-sample participants for the Heat-Pain versus Warmth and
Ex-partner versus Friend contrasts. Steps ii and iii were repeated
for each local region across the whole brain.

If neural representations for pain and rejection are shared
within a local region, the cross-validated accuracy for each
classifier should be significant for both within- and cross-
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modality test contrasts. For example, a pattern trained on Heat-
Pain versus Warmth would classify above chance for both Heat-
Pain versus Warmth (within-modality) and Ex-partner versus
Friend (cross-modality) in out-of-sample participants. To assess
the robustness of the procedure across variations in the
method, we conducted the cross-classification tests with four
different local region definitions, including 6- and 10-mm radius
spherical searchlights45, and 200- and 400-region functional
parcellations46. As the results were comparable across all local
region definitions (Supplementary Fig. 5), here we focus on the
results of 6-mm radius spherical searchlights (Fig. 5 and
Supplementary Fig. 6).

As shown in Fig. 5 and Supplementary Table 2, a number of
regions showed significant cross-classification between pain and
rejection (yellow in Fig. 5), implying shared representation at the
local pattern level. These included the left parahippocampal and
fusiform gyri, retrosplenial cortex, right TPJ, posterior cingulate
cortex and striatum (qo0.05, FDR corrected). Critically, none of
these regions are primary ‘pain-processing’ regions36,42. Many
other regions showed significant classification accuracy for both
pain and rejection (orange in Fig. 5), but without significant
cross-classification (that is, separate modifiability). Such regions
did include those targeted by primary nociceptive afferents (for
example, dACC, aINS and dpINS/S2).

Distinct functional connectivity with dACC patterns. In Study
2, we tested whether the distinct multivariate patterns for pain
and rejection in the same local region of interest within the dACC
are functionally connected to similar or different brain networks

in a separate resting-state fMRI data set (N¼ 91; aim 3).
In previous sections, we showed that the dACC was commonly
activated by both pain and rejection (Fig. 4a), but we identified
distinct multivariate fMRI patterns within the dACC, which were
separately modifiable by pain and rejection (Fig. 5). However, it is
unknown whether these multivariate patterns for pain and
rejection within the dACC connected to distinct brain circuits
that correspond to distinct affective processes and large-scale
brain networks.

To examine this question, we used the Study 1 data to obtain
dACC local-region patterns—defining the region as the portion of
dACC that showed strong separate modifiability in the previous
analyses—separately for Heat-Pain versus Warmth and Ex-
partner versus Friend. This yielded dACCpain and dACCrejection
multivariate patterns optimized to specifically detect each
experience (Fig. 6a). Then, we calculated the expression of each
pattern at each time point in the Study 2 resting-state fMRI data,
yielding two ‘seed’ time courses based on the two patterns. In
order to calculate the strength of expression of each pattern, we
used the dot-product of a vectorized activation map within the
dACC region of interest with the pattern classifier weights.
Finally, we performed random-effects GLM analyses to estimate
functional connectivity with each seed’s time course across the
brain and the connectivity difference maps.

Figure 6a shows the multivariate pattern classifiers within
dACC for pain and rejection and the cross-validated classification
accuracy results, indicating that the dACC patterns for pain and
rejection were distinct, r¼ " 0.04, P¼ 0.23 and separately
modifiable by pain and rejection, as we expected. The whole-
brain functional connectivity patterns for dACCpain and
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Figure 3 | The difference map between the fMRI pattern-based classifiers for pain and rejection. (a) The difference map in which values represent
reliable differences between two discriminant weights (SVM weights for pain minus SVM weights for rejection) based on bootstrapping of SVMs
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NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6380 ARTICLE

NATURE COMMUNICATIONS | 5:5380 | DOI: 10.1038/ncomms6380 | www.nature.com/naturecommunications 5

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


dACCrejection (Fig. 6b) and their difference map (Fig. 6c) showed
that dACCpain and dACCrejection engage distinct functional
connectivity patterns. For example, dACCpain showed stronger
functional connectivity with thalamus, posterior insula, midbrain
regions, ventral and anterior part of medial frontal regions,
posterior cingulate cortex and cerebellum (yellow in Fig. 6c),
whereas dACCrejection was more strongly associated with ventral
and dorsal lateral prefrontal cortex, parietal cortex, temporal pole
and middle temporal lobe, dmPFC and TPJ (blue in Fig. 6c).
These networks correspond well to the regions with differential
predictive weights for pain and rejection in Study 1, but they were
identified using distinct methodology (resting-state fMRI con-
nectivity) in an independent sample in the absence of overt pain
or social rejection.

Discussion
The idea that there is substantial overlap in the neural
representations of pain and rejection within core pain-processing

regions such as dACC and aINS has been influential in various
fields1,47. However, claims about shared representation in the
previous studies have been based on findings of overlapping
univariate fMRI activity between pain and rejection2,4,5, which is
not anatomically specific enough to bear on the question of
whether the underlying neural representations are similar. Here
we used a more fine-grained analysis technique to demonstrate
that the overlapping activity arises from distinct neural
representations18. MVPA is more likely to reflect population
codes across neurons43,45,48, as they have demonstrably greater
sensitivity and specificity to particular types of mental
events17,31,32. We demonstrate that multivariate patterns
encoding the intensity of pain and rejection are separately
modifiable30 by showing that pain and rejection each influenced
distinct, uncorrelated fMRI patterns at the whole-brain level and
within ‘pain-processing’ regions.

The criterion of separate modifiability, which is a stronger
version of the classic ‘double dissociation’ logic, strongly implies
the existence of distinct, non-shared neural representations for
pain and rejection. The criterion also rules out a single-process
interpretation (for example, based on salience, arousal or general
aversiveness) of the fMRI multivariate patterns that we observed
within and across regions. The logic of this claim is laid out more
completely in ref. 30, but it deserves a brief treatment here. We
start by hypothesizing that the effects of both pain and rejection
manipulations on dACC (or any other region discussed here) are
related to a single process (for example, salience), and asking
whether this hypothesis can be falsified with the separate
modifiability criterion. Let us call the pain-related fMRI pattern
in dACC ‘Pattern A.’ If rejection does not activate Pattern A, then
there are three possibilities: (i) Pattern A does not reflect a
common process engaged by both pain and rejection; (ii) Pattern
A is not sensitive to the common process (for example, is too
noisy) or (iii) rejection activates the common process too weakly.
We can rule out (ii), because pain does activate Pattern A.
Alternative (iii) is possible, although we note that subjective
ratings of distress were comparable across pain and rejection
(Fig. 1b). Now, let us consider that rejection activates Pattern B,
but pain does not. If Pattern B also reflects activation of the same
common process (for example, salience), then (iii) is ruled out,
because rejection is demonstrated to be a more potent
manipulation of Pattern B than pain. Thus, we conclude
(i): ‘Pattern A does not reflect a common process engaged by
both pain and rejection’. The same logic applies to Pattern B, and
we can infer that neither pattern encodes a mental process that is
shared by both pain and rejection. This is important in relation to
recent literature interpreting fMRI activity in the dACC,
aINS and other regions in terms of general processes (for
example, both regions are part of the ‘salience network’24).
Based on our findings and the separate modifiability logic,
standard brain activation results may reflect non-specific,
domain-general processes, but the multivariate patterns we
identify here cannot.

The existence of at least some neural dissociation of pain and
rejection is trivial, in part because pain and rejection-related
stimuli are initially processed in different sensory systems (that is,
somatosensory versus visual), and also because they differ in their
cognitive associations and implications. What is at stake,
however, is whether core affective processes (for example, ‘pain
affect’) are shared2,47, and whether the type of emotional distress
elicited during pain is the same as that elicited during social
rejection. Germaine to this issue, pain- and rejection-related
multivariate patterns were uncorrelated and separately modifiable
even within the regions thought to encode ‘pain affect,’ including
the dACC and aINS. In addition, although both pain and
rejection activate somatosensory areas, such as S2 and dpINS, we
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Figure 4 | Multi-voxel pattern similarity analysis for pain-processing
regions. (a) SVM classifier weight patterns within regions-of-interest
(ROIs) from group-level GLM results. The regions were activated in both
contrasts, Heat-pain versus Warmth and Ex-partner versus Friend, and have
been implicated in both pain and rejection. Here, a liberal threshold
(Po0.05, uncorrected) was applied to use large enough regions for multi-
voxel pattern similarity analyses (the averaged number of voxels across six
ROIs¼ 213). For GLM results corrected for multiple comparisons,
see Supplementary Fig. 3. The patterns presented here are the averaged
SVM classifier weights from bootstrap tests (10,000 samples). aINS,
anterior insula; dACC, dorsal anterior cingulate cortex; dpINS, dorsal
posterior insula; S2, secondary somatosensory cortex. (b) Left: the
bootstrap test results for SVM classifier weight correlations. Right: the
group-level correlations between fMRI activations of contrast images for
pain and rejection (n¼ 59). The short red lines in the left panel indicate
95% confidence intervals obtained from bootstrap tests (10,000 samples).
No regions showed significant correlations between SVM classifier weights,
and no regions showed significant average correlations between patterns of
contrast values across participants.
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demonstrate here that they activate different multivariate patterns
within these areas. Thus, together, the findings indicate separable
neural representations that are co-localized at the gross
anatomical level.

It is important to consider how the multivariate patterns we
identified might relate to those at more spatially precise levels of
analysis, including optical imaging and single-unit recording.
Ultimately, neural processes that underlie representations of
mental constructs can be investigated at multiple levels of
analysis. Among methods available in healthy humans, fMRI
multivariate patterns may be particularly useful in inferring
representational similarity43, as such patterns can be sensitive to
population codes distributed across large numbers of individual
neurons. FMRI multivariate patterns have obvious limitations in
spatial resolution compared with single-unit recording49, in large
part because blood-oxygen-level-dependent (BOLD) fMRI is
sensitive to changes in microvascular beds that subserve many
neurons, and the BOLD response thus acts as a spatial low-pass
(blurring) filter sensitive to some, but not all, neuronal-level
processes48,50. Because of the spatial blurring properties of fMRI,
finding that two manipulations activate similar fMRI patterns
does not necessarily imply similar neuron-level representations.
However, finding dissociable fMRI patterns, as we did here,
implies that the neuron-level population codes are different. An
additional advantage of working at the fMRI pattern level is that
fMRI can detect representations encoded across millions or
billions of neurons, including interactions among large-scale
brain networks, complementing approaches at finer spatial scales.

It is also important to note that our findings do not imply that
there are no shared representations anywhere in the brain. To the
contrary, we identified a number of regions showing similar fMRI
patterns for pain and rejection. However, these regions were
located outside of core pain-processing brain systems36,42. Thus,
shared representations may exist (proviso considerations outlined
above), but they are not likely associated with nociceptive
pain. Rather, they are likely to be broadly associated with
processes related to context, memory, motivated action, social
inferences, and/or endogenous regulation (for example, opioid
response in striatum13,51), among other processes. However,
following the logic outlined above, we cannot claim that regions
showing similar fMRI patterns are also similar at lower levels of
analysis.

The idea that pain and rejection share neurophysiological
mechanisms has also been supported by neurochemical and
pharmacological findings11,13,52, which at first may seem
contradictory to our conclusion. However, similar neuro-
chemical responses to pain and rejection (for example,
endogenous opioids and oxytocin12) may reflect common
physiological regulatory responses to general aversive events
(for example, stress). For example, the endogenous opioid system,
implicated in both pain and rejection, also plays a key role in
stress-induced analgesic effects53, which could explain the
analgesic effects of acute experiences of social exclusion or
separation54,55. In addition, the effects on rejection experience of
‘pain medications’ like acetaminophen11 may be related to
nonspecific neurochemical pathways for aversive affective states,
such as the serotonin system56. Therefore, the involvement of
common neuropeptides and regulatory mechanisms in both pain
and rejection do not necessarily imply shared neural
representations.

More broadly, the multivariate pattern-based approach we use
here has potential for identifying and targeting many types of
affective processes more specifically, which could enable sig-
nificant progress in understanding the structure of emotion
and its regulatory mechanisms9 and providing more specific
and robust links between brain representations and
psychopathology57. Importantly, our results do not imply that
there is no functional relationship between pain and rejection, or
that one cannot influence the other. In fact, such interactions may
underlie, for example, the increased rate of pain disorders
observed following emotional trauma58. Developing and using
fMRI pattern-based markers that are sensitive and specific to
different psychological experiences will provide new leverage
points for examining their underlying neural processes, the
regulatory effects on the processes, and inter-relationships among
different psychological processes. This approach could ultimately
contribute to developing tailored interventions for specific
psychological problems by identifying unique components of
each condition, and it could also guide diagnosis and treatment of
mental disorders by providing provisional fMRI-based
biomarkers for them59.

This study also has implications for how networks are
identified in fMRI studies. We showed that fMRI activity within
localized anatomical regions (for example, the dACC region
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corresponding to Vogt’s anterior mid-cingulate zone60) can be
decomposed into two orthogonal multivariate patterns that, when
used as ‘seed’ patterns in connectivity analyses, are associated
with two distinct large-scale brain networks. This finding
supports the idea that local regions such as dACC can contain
multiple, distinct neural population codes25 that encode distinct
mental processes. Previous neuroimaging studies have generally

assessed functional connectivity by averaging activity within
localized ‘seed’ regions into a single variable, which implicitly
assumes that all voxels within the ‘seed’ region share a common
pattern of connectivity. Therefore, the current approach is
qualitatively different from the traditional approach to
functional connectivity, and has broad implications for network
analysis in future fMRI studies.

Multivariate pattern classifiers only within dACC

Difference (pain minus rejection) of functional connectivity

dACC ROI coverage

Classification accuracy (cross-validated)

Heat-pain vs warmth

Ex-partner vs friend

Chance (50%)

z = 29

dACCpain dACCrejection

0
0.2
0.4
0.6
0.8
1.0

**
***
85

50

71

51

Functional connectivity with rs-fMRI data (n = 91)

–2.6
2.6

t

dACCrejection

dACCpain

Overlap

dACC ROI coveragex = 0

x = –41 45

x = –41 45

x = 0

FDR q < 0.05

dACCpain dACCrejection

z = 29

r = –0.04

Sagittal: x = 1

Sagittal: x = 1

FWER < 0.05
(bonferroni) 

HighLow

–6
6

Figure 6 | Difference in functional connectivity patterns with dACC pattern classifiers for pain and rejection. (a) The multivariate pattern classifiers for
pain and rejection within the dorsal anterior cingulate cortex (dACC) region-of-interest (ROI) (a top). The dACC ROI was defined by the searchlight analysis
results presented in Fig. 5, which showed that the dACC ROI contained information for both pain and rejection conditions, but the patterns were distinct and
non-transferrable. Using the dACC ROI, we trained linear SVMs to discriminate pain and rejection from their respective control conditions, and tested on out-
of-sample participants. The pattern weights were uncorrelated with each other, r¼ "0.04. The cross-validated (leave-one-subject-out) accuracy in two-
choice classification tests demonstrated separate modifiability of the pattern classifiers (a bottom). The dotted line indicates the chance level (¼ 50%), and
the error bars represent standard error of the mean across subjects. **Po0.01, ***Po0.001, binomial test. (b) Seed-based functional connectivity with dACC
pattern classifiers for pain and rejection. Here seeds were pattern expression values (the dot-product of a vectorized activation map and SVM weights within
dACC) for pain and rejection. The functional connectivity for each condition was calculated with independent resting-state fMRI data (n¼91). These maps
were thresholded at family-wise error rate (FWER)o0.05 using Bonferroni correction. Here we used Bonferroni correction instead of false discovery rate
(FDR) because the latter provided too liberal thresholds for these functional connectivity patterns (uncorrected Po0.03) and therefore yielded non-sensible
maps. (c) Paired t-test results between two seed-based functional connectivity patterns. The results were thresholded at FDRo0.05.
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Previously, we published two papers using part of the current
data set (N¼ 40, compared to N¼ 60 currently)4,32. The first
publication4 reported overlapping fMRI activity across pain
and rejection within many pain-processing regions, based on
univariate GLM analyses. We interpreted these findings in terms
of shared representations between pain and rejection. The co-
localized representations may still point to important interactions
between pain and rejection. However, the current findings at the
multivariate pattern level suggest that the representations of pain
and rejection are in fact distinct within and across regions. This
conclusion, which differs from our previous interpretation of the
data, does not result from the addition of 20 more participants
(see Supplementary Fig. 7), but rather from the different level of
analysis. The second previous publication32 used part of this data
set (N¼ 40) to test the cross-study sensitivity and specificity of an
fMRI-based brain marker for experimental pain. The focus of the
current study is qualitatively different: The previous paper32

focused on the development of a new fMRI-based marker for
pain, whereas the current study focuses on examining, and
ultimately challenging, current notions of shared representation
across social and physical pain. We believe the current study
provides a more comprehensive picture of the relationship
between pain and rejection than previous work, and provides a
step towards a better understanding of the interaction between
pain and rejection and developing tailored interventions for each
of them.

More specifically, the following analyses have been conducted
only in the current study, not in the previous studies4,32:
(i) we identified a multivariate fMRI pattern sensitive and
specific to rejection; (ii) we demonstrated that the rejection
pattern is qualitatively different from the pain pattern, and the
rejection pattern did not respond to pain; (iii) we showed that
pain and rejection yielded distinct multivariate patterns even in
the overlapping regions activated by both pain and rejection;
(iv) we identified brain regions with similar neural patterns
for pain and rejection using a searchlight approach; and
finally, (v) we showed that the distinct multivariate patterns
for pain and rejection within the dACC engaged distinct
functional brain networks using a separate resting-state data set
(N¼ 91).

The present study has limitations that should be addressed in
future studies. Given that we used a five-point Likert scale for
pain and emotion ratings and applied only two different intensity
levels of stimulation for both pain and rejection, the multivariate
patterns we identify here may not be sensitive to fine-grained
differences in the subjective intensity of pain and rejection
experience. Therefore, these multivariate patterns cannot be
regarded as fully characterized representations of pain and
rejection experience. We cannot also rule out the possibility that
some of the activity in the multivariate patterns we identified
could be related to response preparation, attention and other
consequences, instead of mental representations central to the
experience of pain and rejection. This is an important issue with
all MVPA analyses and fMRI results in general61, and therefore
future work will be required to identify fMRI representations of
pain and rejection by characterizing their specificity and
generalizability across different tasks, individuals and studies.
Particularly, the stimuli used in the current social rejection task
(for example, ex-partner photos) refer to past experience and only
indirectly to present circumstance, whereas the somatic pain task
elicits acute thermal pain. Therefore, other social rejection tasks
eliciting acute feelings of exclusion (for example, the Cyberball
game task62) might provide a good additional comparison
condition, although they are likely to elicit less intense
rejection-related emotions than the current task. We also
focused only on pattern-based classification across individuals

because this approach is more stable and generalizable than the
within-subject approach. However, identifying individual-specific
multivariate patterns might also be informative about the
relationship between pain and rejection.

In conclusion, our results provide the first neuroimaging
evidence that pain and rejection do not share neural representa-
tions within core pain-processing brain regions. Instead,
the present findings suggest that pain and rejection are
represented in distinct mesoscopic neural systems whose
locations are conserved across individuals. This new approach,
and the evidence for separately modifiable multivariate patterns
for each type of ‘pain,’ can move the field beyond the search for
shared processes across pain and rejection and provide a step
towards identifying their unique components, developing tailored
interventions for each of them, and obtaining a better under-
standing of the interactions between these two distinct affective
processes.

Methods
Participants. Sixty healthy, right-handed participants (31 females, Mage¼ 20.8,
SDage¼ 3.0) completed the social rejection and somatic pain tasks while under-
going scanning with fMRI (Study 1). All participants experienced an unwanted
romantic relationship break-up within the past 6 months, and indicated that they
felt rejected when thinking about their break-up; all participants rated high on a 1
(not at all rejected) to 7 (very rejected) scale asking how rejected they felt when
they thought about their rejection experience (M¼ 5.52, s.d.¼ 1.08). Participants
were recruited via flyers posted around Manhattan and advertisements posted on
Facebook and Craigslist. The sample was comprised of 63% Caucasian, 15%
Asians, 10% African Americans, 3% Hispanic and 8% other. All participants were
native English speakers and received $175 for their participation. FMRI task data
(for example, trial onset times) were lost for one participant. Thus, all imaging
analyses were completed on 59 participants. The study was approved by the
Columbia University’s Institutional Review Board.

In addition, 91 healthy, right-handed participants (48 females, Mage¼ 20.8,
SDage¼ 2.8) completed the resting-state fMRI task (Study 2), separately from the
social rejection and somatic pain tasks. The sample was comprised of 87%
Caucasian, 4% Asians, 2% African Americans and 7% Hispanic. All participants
were native English speakers and received $50 for their participation. The study
was approved by the University of Colorado Boulder’s Institutional Review Board.

All participants provided written informed consent. Participants were screened
to ensure that they did not suffer from any neurological or psychiatric illness,
experience chronic pain, take psychoactive medications, antihistamine or steroids,
have metal in their bodies, or have a history of substance use or abuse.

Social rejection task stimuli. The social rejection task was designed after the
following two lines of research: (i) fMRI research where photos provided by
participants were used to elicit powerful emotions (for example, maternal love,
romantic love and rejection)51 and (ii) behavioural research where cues were used
to recall autobiographical experiences of social rejection and to effectively reactivate
distress related to social rejection63. The social rejection stimuli consisted of:
(i) a headshot photograph of each participant’s ex-partner or a same-gendered
friend with whom they shared a positive experience around the time of their
break-up, and (ii) cue phrases displaying beneath each photograph that led
participants to focus on a specific experience they shared with each person.
Participants provided these cue phrases before the day of fMRI scanning using a
procedure developed in prior research64: they first wrote a specific description of
break-up experience with their ex-partner and positive experience with their friend.
Subsequently, they created a cue-phrase to capture the gist of their experience.
They were reminded of the cues they generated and the experiences they referred to
on the day of scanning following established procedures. We cropped all images to
ensure the total area of the photograph taken up by the face to be constant across
Ex-partner and Friend images. Ratings of the picture quality and attractiveness
by a group of ten individuals who were blind to the study goals and hypotheses
indicated that the level of picture quality and attractiveness for each photograph
did not differ between Ex-partner and Friend photographs.

Somatic pain task stimuli. For somatic pain stimuli, thermal stimulations were
delivered to left volar forearm, consisting of two levels: non-painful (rated as level 2
on a 10-point scale by participants) versus very painful (rated as level 8 on a
10-point scale; near the limit of pain tolerance). With a calibration procedure65,
we chose two temperatures on a participant-by-participant basis to be sure that the
subjective pain intensity was constant across participants. We carried out the
calibration task before the day of fMRI scanning.
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Pain calibration task. Pain calibration consisted of 24 trials where participants
rated the pain induced by thermal stimulation (10 !C s" 1 ramp up, 7 s at target
temperature, 10 !C s" 1 ramp down) applied using a TSA-II Neurosensory
Analyzer (Medoc Ltd) with a 16-mm thermode end-plate. Participants provided
verbal ratings with a 0 (no sensation) to 10 (unbearable pain) scale. Thermal
stimulations were applied in a fixed order through eight different, nonadjacent
candidate skin sites on the participant’s left volar forearm. On each trial, we used
an adaptive procedure to estimate temperatures corresponding to level 2, 5 and 8
(referred to as ‘low,’ ‘medium’ and ‘high’). For the estimation procedure, a linear
regression model continuously fit the data collected up to that point during the
calibration session with temperature as the independent variable and pain ratings
as the dependent variable. Although the temperature–pain relationship is not
perfectly linear, it is relatively robust to noise and can be fit with few observations.
To make the calibration more robust to idiosyncratic behaviour on individual
trials, we defined trials for which the absolute value of the residual based on the
initial regression was greater than three times the median absolute deviation as
outliers, and the model was re-fit without the outliers. The predicted low, medium
and high temperature levels from the regression model were used to determine the
temperature applied on the subsequent trial. Throughout the calibration, we used a
fixed, counterbalanced order of heat-levels (high, medium or low). The order was
chosen to equalize the transitional probabilities and to balance stimulation at high,
medium and low temperatures across the eight skin locations.

Pre-scan task training. Before fMRI scanning, the experimenter described each
step of the Social Rejection task (referred to as the ‘Photograph’ task to partici-
pants) and the Somatic Pain task (referred to as the ‘Heat’ task to participants). The
experimenter explained that during the ‘Photograph’ task, participants would see
photographs of their ex-partner and friend and cue-phrases beneath each photo-
graph. Participants were asked to look directly at each photograph and reflect on
the thoughts and emotions each photograph-cue pair elicited in them. During the
Somatic Pain task, participants were asked to stare at the fixation cross during each
trial and focus on the sensations elicited by the somatic stimulus. Participants were
then instructed how to rate their affect following each type of trial and how to
perform the visuospatial control task (see Fig. 1a for a detailed description of
these tasks).

Pain and affect ratings and post-scan questionnaire. Following each trial,
participants rated how they felt or the pain intensity they experienced using five-
point Likert scales (1¼ ‘very bad’ or ‘very painful’, 5¼ ‘very good’ or ‘not painful’).
For display purposes, these scores were reversed such that higher scores indicate
worse mood or more pain (Fig. 1b). After participants exited the scanner, they were
asked to write freely about the thoughts that came to mind regarding (i) their
recent romantic relationship break-up and (ii) their positive experience with
friends during the experiment in the fMRI scanner.

Resting-state fMRI task. During the resting-state fMRI task (5 min 34 s),
participants were asked to relax with their eyes closed while remaining awake.

FMRI acquisition and preprocessing for study 1. Whole-brain fMRI data were
acquired on a GE 1.5 T scanner using a T2*-weighted spiral in-out sequence
developed by Dr Gary Glover: repetition time (TR)¼ 2,000 ms, echo time
(TE)¼ 40 ms, flip angle¼ 84 and field of view¼ 22 cm, 24 axial slices (3.5#
3.5# 4.5 mm3 voxels) parallel to the anterior commissure-posterior commissure
line. Structural data were acquired with a T1-weighted spoiled gradient-recalled
sequence: 1# 1# 1 mm3, TR¼ 19 ms, TE¼ 5 ms, flip angle¼ 20. Stimulus pre-
sentation and behavioural data acquisition were controlled using E-Prime software
(PST Inc.).

Structural T1-weighted images were co-registered to the mean functional image
for each subject using the iterative mutual information-based algorithm
implemented in SPM8 and manual adjustment of the starting point until the
co-registration was satisfactory. Structural images were normalized to Montreal
Neurological Institute space using SPM8. Before preprocessing of functional
images, we removed the first four volumes to allow for image intensity stabilization.
We also identified image-intensity outliers by computing the mean and standard
deviation (across voxels) of intensity values for each image for all slices to remove
intermittent gradient and severe motion-related artefacts present to some degree in
all fMRI data. To identify outliers, Mahalanobis distances for the matrix of slice-
wise mean and standard deviation values (concatenated)# functional volumes
(time) were computed, and any values with a significant w2 value (corrected for
multiple comparisons based on the more stringent of either FDR or Bonferroni
methods) were considered outliers (less than 1% of images were outliers). Each
time-point identified as outliers was included as a separate nuisance covariate in
the first-level models.

Then, functional images were corrected for differences in the acquisition
timing of each slice and were motion (realignment) corrected using SPM8. The
functional images were warped to SPM’s normative atlas using warping parameters
estimated from co-registered, high-resolution structural images, interpolated to
2# 2# 2 mm3 voxels, and smoothed with an 8-mm FWHM Gaussian kernel. This
smoothing level has been shown to improve inter-subject functional alignment,

while retaining sensitivity to mesoscopic activity patterns that are consistent across
individuals48,66.

FMRI acquisition and preprocessing for Study 2. Whole-brain fMRI data were
acquired on a 3T Siemens Trio system (Siemens) with a 12-channel receiver head
coil using a T2*-weighted functional EPI sequence: TR¼ 2,000 ms, TE¼ 29 ms,
matrix size¼ 64# 64# 33, flip angle¼ 75, slice thickness¼ 3.5 mm, field of
view¼ 24 cm. The first four volumes of the resting state data were first removed to
allow for image intensity stabilization, followed by detection of frame-to-frame
motion and intensity outliers using the Artifact Detection Toolbox. Skull stripping
was then conducted using FSL’s Brain Extraction Tool (v5, FMRIB, Oxford, UK),
followed by slice timing and motion correction (realignment). Functional images
were smoothed with an 8-mm FWHM Gaussian kernel, and warped to the
Montreal Neurological Institute template using FMRIB’s Linear Image Registration
Tool. Using the Conn SPM toolbox67, data were temporally filtered using a band-
pass filter to retain frequencies between 0.009 and 0.08 Hz. Non-neural sources of
variance were removed by regressing out the six estimated head movement
parameters (x, y, z, roll, pitch and yaw) and their first temporal derivatives, the top
five principal components from the signal averaged in the white matter and
ventricles, and the frames identified as motion or intensity outliers, and the residual
was retained for analyses of functional connectivity.

Behavioural analysis. Affect rating data (Fig. 1b) were analysed using a multi-
level GLM analysis68 (http://wagerlab.colorado.edu/tools). Linguistic Inquiry and
Word Count software (LIWC33)—a word frequency-based text analysis tool—was
used for text analysis (Fig. 1c). The written descriptions of participants’ stream of
thoughts while watching their ex-partner’s photos were first filtered with the
negative emotion category in the LIWC dictionary. Then, we calculated the word
frequency for each negative emotion category using the sub-categories within the
negative emotion category.

First-level fMRI analysis for Study 1. SPM8 was used to conduct first-level GLM
analyses by modelling task regressors corresponding to the 15-s photo/heat period,
the 5-s affect/pain rating period and the 18-s visuospatial control task period. The
fixation-cross epoch was designated the unmodelled baseline. For each task
regressor, a Boxcar function was convolved with SPM8’s canonical haemodynamic
response function. A high-pass filter of 180 s, which is well suited for pain and
emotion elicited for longer duration, was then applied. Other regressors of non-
interest (that is, nuisance variables) included (i) ‘dummy’ coding regressors for
each run (intercept for each run); (ii) linear drift across time within each run; (iii)
the six estimated head movement parameters (x, y, z, roll, pitch and yaw; mean-
centered) and their squares, their derivatives and squared derivative for each run
(24 columns per run); (iv) indicator vectors for outlier time points identified based
on their multivariate distance from the other images in the sample (see above);
(v) indicator vectors for the first two images in each run. Voxel-wise statistical
parametric maps for different trial types were calculated for each participant and
then entered into MVPA (Figs 2–5) or random-effects group GLM analyses
(Supplementary Fig. 3). Robust regression analysis was implemented for the group-
level GLM analyses69. All results were thresholded at qo0.05, FDR corrected,
two-tailed.

Multivariate voxel pattern analysis. We used linear SVMs34 to train multivariate
pattern classifiers for pain and rejection. For global pattern classifiers (Figs 2
and 3), we first conducted feature selection to maximize predictability and
generalizability of SVMs. A priori voxels associated with ‘pain’, ‘emotion’ and
‘social’ terms were selected based on the union of forward and reverse inference
maps from the automated large-scale meta-analytic database of more than 5,800
published neuroimaging studies (http://neurosynth.org22; see Supplementary
Fig. 1). The SVMs were implemented using custom Matlab code based on the
Spider toolbox (http://people.kyb.tuebingen.mpg.de/spider). The pattern classifiers
were trained on first-level contrast images for four different conditions (that is,
Heat-Pain, Warmth, Ex-partner and Friend) to separately discriminate ‘Heat-Pain’
and ‘Ex-partner’ from the respective three other conditions using the one-against-
all approach34 (that is, Heat-pain against other conditions, including Ex-partner,
and Ex-partner against other conditions, including Heat-pain). Bootstrap tests were
conducted to provide P-values for voxel weights in order to threshold the classifier
weights for display and interpretation (Fig. 2b). We constructed 10,000 bootstrap
sample sets (with replacement) and ran SVMs on each. Two-tailed, uncorrected
P-values were calculated for each voxel based on the proportion of weights above or
below zero. With a leave-one-subject-out cross-validation procedure, we assessed
classification accuracy of the SVM classifiers using the forced-choice test, where
pattern expression values (that is, the dot-product of a vectorized activation image
with the classifier weights) were compared for two conditions tested within the
same out-of-sample individual, and the higher was chosen as pain or rejection. We
calculated the accuracy for Heat-pain versus Ex-partner or Ex-partner versus Heat-
pain, Heat-pain versus Warmth and Ex-partner versus Friend. We also conducted
a multi-voxel pattern similarity analysis and a cross-classification test (Figs 4 and
5), and functional connectivity analysis with resting-state fMRI data (Study 2). For
more details of these analyses, see Results.
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Supplementary!Figure!6!(re:!Fig.!5).!Local!pattern!analysis!results:!Within8modality!classification!accuracy!with!68mm!spherical!
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those!that!accurately!discriminated![ExDpartner!vs.!Friend]!are!shown!in!green!at!q!<!.05!FDRDcorrected.!(B)!Scatterplot!showing!crossD
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!
Supplementary!Figure!7!(re:!Fig.!2).!Separate!modifiability!of!fMRI!pattern5based!
classifiers!for!pain!and!rejection:!Results!only!with!the!original!dataset!(N!=!40)!used!in!
Kross!et!al.2!The!plots!show!cross5validated!(leave5one5subject5out)!accuracy!in!two5choice!
classification!tests.!The!results!were!similar!to!the!results!with!the!whole!dataset!(N!=!60,!
Fig.!2A),!suggesting!the!different!conclusion!between!the!previous2!and!current!study!does!
not!result!from!the!addition!of!20!more!participants,!but!from!the!different!type!of!analysis!
performed!(i.e.,!multivariate!pattern!analysis).!The!dashed!line!indicates!the!chance!level!
(50%),!and!the!error!bars!represent!standard!error!of!the!mean!across!subjects.!***p!<!.001.!
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Supplementary!Table!1.!The!difference!map!between!the!fMRI5pattern!based!
classifiers!for!pain!and!rejection.!!
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Note.!We!present!regions!that!showed!reliable!differences!between!two!discriminant!
weights!(SVM!weights!for!pain!minus!SVM!weights!for!rejection)!based!on!bootstrapping!of!
SVMs!(10,000!samples)!at!q!<!.05,!FDR!corrected.!

x y z voxels volume+(mm3)

Superior+parietal 24 770 50 113 904
724 740 44 1 8
720 768 56 48 384

Brainstem 10 76 712 57 456
Supramarginal 64 720 24 8 64

50 744 50 20 160
Dorsal+posterior+insula 40 78 10 15 120
Parahippocampal 14 76 726 15 120
Middle+insula 44 72 78 13 104
Cerebellum 0 748 746 1 8

32 760 730 12 96
Superior+temporal+(R) 62 718 6 12 96
Amygdala 714 76 716 12 96
Thalamus+ 8 724 2 2 16
Inferior+frontal+(L) 746 10 10 6 48
Middle+insula+(R) 34 6 12 3 24
Occipital 24 778 20 2 16
Occipital+(L) 724 782 24 2 16
brainstem 4 718 76 1 8
Lingual+(R) 12 774 72 1 8

10 776 0 1 8

Inferior+frontal+(L) 748 22 18 72 576
Perigenual+anterior+cingulate 710 36 16 58 464

712 30 24 1 8
Ventromedial+prefrontal 710 56 4 54 432
Posterior+cingulate 72 750 26 50 400
Supramarginal 54 728 42 38 304
Parahippocampal+(L) 722 74 730 24 192
Parahippocampal+(R) 22 716 724 1 8
Fusiform+(L) 740 768 718 13 104
Inferior+frontal+(R) 52 32 76 22 176
Lingual+(R) 26 786 76 21 168
Putamen 726 720 0 1 8

720 78 8 19 152
Temporal+parietal+junction 52 760 22 17 136

58 740 18 4 32
Supplementary+motor 0 714 52 1 8

72 24 56 13 104
72 714 56 1 8

Precentral 52 76 24 1 8
52 74 50 6 48
38 720 52 1 8
40 720 56 3 24

Postcentral 54 714 40 4 32
50 718 44 3 24

Middle+frontal 740 10 48 3 24
Middle+temporal+(L) 744 714 718 2 16
Middle+temporal+(R) 50 714 716 2 16
Posterior+cingulate 2 744 16 2 16
Cerebellum 30 736 732 1 8
Occipital+(R) 38 794 72 1 8
Occipital+(L) 748 782 4 1 8

744 770 20 1 8
Inferior+frontal+(L) 750 30 2 1 8

Pain%>%Rejection

Rejection%>%Pain

Regions
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!

Supplementary!Table!2.!Cross5classification!test!results!

!
Note.!We!present!regions!that!showed!significant,!cross5classification!accuracy!in!the!cross5
classification!tests!with!65mm!radius!spherical!searchlights!around!center!voxels!(the!
yellow!colored!regions!in!Fig.!5)!
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