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The predictive mapping 
approach in neuroimaging

Choong-Wan Woo and Tor D. Wager*

For the past 20 years, neuroimaging techniques have 
WUDQVIRUPHGbKRZ�ZH�VWXG\�SV\FKRORJ\�DQG�PHGLFLQH��
Data from neuroimaging can constrain psychological 
theories, resolve some theoretical debates, and be used 
to develop new hypotheses about human cognition and 
HPRWLRQVbE\�SURYLGLQJ�D�JURXQGLQJ�LQ�QHXURSK\VLRORJ\�
(1��b,Q�PHGLFLQH��QHXURLPDJLQJ�SURYLGHVbSURPLVLQJ�
PHDVXUHV�WKDW�FDQ�VHUYH�DVbELRPDUNHUV�IRU�EUDLQ�UHODWHG�
GLVRUGHUV��VXFK�DVbSV\FKLDWULF�DQG�QHXURORJLF�GLVRUGHUV��2, 
3��b1HXURLPDJLQJbFDQ�DOVR�FRQQHFW�SV\FKRORJ\�WR�ELRORJ\�
DQG�PHGLFLQH��ZKLFK�FDQ�KHOS�UHVHDUFKHUV�XQGHUVWDQGbKRZ�
the mind and the body interact and thereby treat medical 
conditions more effectively (for example, understanding 
the placebo effect) (4).

Despite these promises, neuroimaging has not followed 
the quick and easy path to success that was initially 
HQYLVLRQHG��2QH�LPSRUWDQW�UHDVRQbLV�WKDW�WRR�OLWWOH�HIIRUW�
KDV�JRQH�LQWR�GHYHORSLQJbQHXURLPDJLQJ�PDUNHUV�WKDW�DUH�
sensitive and specific to particular mental processes or 
health-related outcomes and can be prospectively applied 
to new data. The dominant paradigm in neuroimaging has 
focused on brain “maps,” not markers. Brain maps identify 
anatomical regions associated with particular mental 
processes. This paradigm does not adequately address 
the many-to-many relationships between brain regions 
and mental processes: One brain region can be involved 
in multiple processes, and one process can be distributed 
across many regions. Thus, we cannot make inferences 
about which mental process is engaged based on brain 
maps. Markers, by contrast, are multivariate patterns of 
brain activity optimized to be sensitive and specific to a 
SDUWLFXODU�W\SH�RI�PHQWDO�SURFHVV��:LWKRXW�PDUNHUV�bWKH�
inferences we can make about brain representations are 
fundamentally limited (5).  

Do we really have neuroimaging markers?
It might seem that neuroimaging markers for mental 

processes already exist, but in fact, we have been using 
neuroimaging findings as brain markers without properly 
assessing their sensitivity and specificity. For example, 
amygdala activity has often been used as a brain marker 
for negative emotion. However, the amygdala is a large 
anatomical structure comprising heterogeneous neuronal 
populations that encode various physical and mental 
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events (6). Therefore, averaged functional brain activity 
within this region is not very useful as a brain marker 
because of its low specificity (7���b

In order to be considered as a marker, the brain 
measure used should show high sensitivity and specificity 
to the mental event or process of interest. Sensitivity 
accounts for whether a test—in this case, a brain marker—
shows positive results when a target psychological or 
EHKDYLRUDO�SURFHVV�LV�HQJDJHG��ZKLOH�VSHFLILFLW\bGHVFULEHV�
whether the test shows positive results that are exclusive 
to the target process being engaged. Sensitivity and 
specificity can tell us the diagnostic performance of 
the brain measure in question and enable us to make 
inferences or predictions about mental processes or 
outcomes of interest.

Traditional brain mapping approaches
Traditional brain mapping approaches—often called 

“mass-univariate analysis” or “statistical parametric 
mapping”—have been extremely useful in the development 
of neuroimaging. However, these approaches are of 
little help in identifying and utilizing brain markers with 
established sensitivity and specificity. The main goal of the 
traditional approach is to map different mental functions 
onto specific brain regions to localize brain functions. 
As Figure 1A demonstrates, in this framework, tasks or 
FRQGLWLRQV�DUH�LQGHSHQGHQW�YDULDEOHV��DQG�HDFK�YR[HOōV�
fMRI signal becomes a dependent variable. The most 

important question 
answered by the 
traditional approach 
is whether there is an 
effect in each voxel or 
region.

This traditional 
approach has, at 
best, low sensitivity 
to the effects of task 
conditions because it 
assumes independence 
among voxels or 
regions. However, 
psychological and 
behavioral processes 
and related outcomes 
result from integrated 
circuit dynamics. 
Thus, the effects of 
task conditions—and 
the relationships 
between brain activity 
and behavioral/
psychological 
outcomes—are likely 
to be distributed 
across brain regions 
and voxels. Analyses 
that consider only 
information in a 

single voxel or region, as the mass-univariate approach 
does, are unlikely to capture the full effects of tasks. 
In addition, the univariate approach involves a large 
number of statistical tests and requires a correction for 
multiple comparisons (8). The correction for multiple 
tests focuses on controlling false positives and in turn 
increases false negatives, which results in low sensitivity 
(8). With low sensitivity, many of the voxels activated in 
relation to a task or outcome will be missed, providing a 
poor assessment of the pattern across the brain. This, in 
turn, undermines efforts to establish replicability across 
studies (9, 10). Furthermore, as illustrated in Figure 2, 
traditional brain mapping has a limited ability to detect 
the unique relationships between mental functions and 
brain regions, which could undermine the specificity of 
the resulting brain maps.

Developing neuroimaging markers: 
The predictive mapping approach

The predictive mapping approach can resolve the 
issues described above and provide neuroimaging 
markers with quantitatively characterized measures of 
diagnostic performance. Predictive mapping aims to 
develop multivariate, systems-level predictive models 
(or decoding models) that are sensitive and specific 
to particular outcomes of interest (see, for example, 
11). As Figure 1B shows, one of the main features that 
distinguishes predictive mapping from traditional 

      
FIGURE 1. 
Traditional 
versus predictive 
mapping. (A) 
Traditional mapping 
approaches 
(including univariate 
analysis) aim to 
obtain the functional 
architecture of the 
brain by localizing 
effects in the brain. 
This approach 
often entails low 
sensitivity and 
VSHFLƓFLW\���B) 
The predictive 
mapping approach 
aims to develop 
DbPXOWLYDULDWH��EUDLQ�
wide predictive
(decoding) model 
WKDW�LVbVHQVLWLYH�
DQG�VSHFLƓF�WR�WKH�
RXWFRPH�RI�LQWHUHVW�b
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DSSURDFKHVbLV�WKDW�WKH�DVVLJQPHQW�RI�LQGHSHQGHQW�DQG�
dependent variables is reversed.
7KH�SUHGLFWLYH�PDSSLQJ�DSSURDFK�KHOSV�WRbVROYH�WKH�

ORZ�VHQVLWLYLW\�DQG�VSHFLILFLW\�SUREOHP�RIbWUDGLWLRQDO�
mapping in several ways.  First, it can identify voxels 
that have selective relationships with the outcome (see 
Figure 2). Second, it uses distributed signals across many 
voxels without requiring thresholding and correction 
for multiple comparisons. Third, it is sensitive to 
information at multiple spatial scales, including large-
scale information distributed across multiple systems 
DQG�PHVRVFDOH�LQIRUPDWLRQbEHORZ�WKH�UHVROXWLRQ�RI�
the imaging itself (so-called fMRI hyperacuity) (12). 
Assessing multivariate patterns rather than individual 
voxels is critical if information about outcomes is 
encoded in neuronal population codes (13). Furthermore, 
assessing large-scale patterns across systems is 
critical if mental states are encoded across systems 
(14��b$�UHODWHG�DSSURDFK��FDOOHG�LQIRUPDWLRQ�EDVHG�
mapping (15), also uses multivariate patterns to predict 
RXWFRPHV��+RZHYHU�bLW�VWLOObIRFXVHV�RQ�ORFDO�HIIHFWV�
(using searchlights, or spatial moving windows), and 
thus is subject to limited sensitivity and massive multiple 
comparisons. In contrast, the predictive mapping 

),*85(����%HQHƓWV�RI�SUHGLFWLYH�PDSSLQJ��There are a number of scenarios under which predictive mapping yields higher power and 
more accurate representation of brain-outcome relationships than traditional mapping. We illustrate one such scenario here, in which 
there is a direct relationship between Voxel 1 and the outcome (mental process X), and a correlation between Voxel 1 and Voxel 2 that 
UHŴHFWV�D�FRPPRQ�VRXUFH�RI�QRLVH�XQUHODWHG�WR�WKH�RXWFRPH��,Q�WKH�FHQWHU�WRS�SDQHO��XQLYDULDWH�PDSSLQJ�PD\�LGHQWLI\�VLJQLƓFDQW�HIIHFWV�
of both voxels, as it cannot separate regions with indirect connections to X from those that have more direct relationships. The predictive 
PDSSLQJ�DSSURDFK�FRQWUROV�IRU�9R[HO���ZKHQ�DVVHVVLQJ�WKH�HIIHFWV�RI�9R[HO����DQG�VR�ZLOO�QRW�VSXULRXVO\�LGHQWLI\�9R[HO���DV�VLJQLƓFDQW��
In addition, controlling for Voxel 2 can remove some of the noise in Voxel 1, which may otherwise mask the relationship between Voxel 
��DQG�;�DQG�SUHYHQW�9R[HO���IURP�UHDFKLQJ�VLJQLƓFDQFH��FHQWHU�ERWWRP�SDQHO����)RU�ERWK�UHDVRQV��XQGHU�WKLV�VFHQDULR��WKH�SUHGLFWLYH�
mapping approach has a greater chance of identifying true brain-outcome relationships.

to flexibility in how researchers identify what counts 
as an a priori hypothesis and, in turn, increases in false 
positive results and reduced specificity (19). For example, 
ŏDP\JGDOD�DFWLYLW\Ő�GRHV�QRW�SURYLGHbD�UHSURGXFLEOH�
definition of precisely (a) which voxels in the amygdala 
should be activated (there are typically hundreds); and (b) 
the relative expected intensity of activity across each voxel. 
Any significant result anywhere in the amygdala can count 
as amygdala activation, and this flexibility leads to spurious 
findings. In contrast, the predictive mapping approach 
can minimize biases in measuring, testing, and replicating 
effects in new individuals and studies through predictive 
PRGHOV�GHILQHG�E\�SUHFLVHbSDWWHUQV�RI�EUDLQ�DFWLYLW\��ZKLFK�
can provide a priori predictions and testing procedures.  

Precisely defined predictive models (based on 
PXOWLYDULDWH�SDWWHUQV�RI�QHXURLPDJLQJ�GDWD�bSURYLGH�
several advantages for basic and translational research. 
First, hypotheses are precisely specified in terms of 
spatial patterns, and responses in these patterns are 
falsifiable and readily testable, providing a foundation 
for strong inference (20, 21). Second, precisely specified 
models are research products that can be shared 
and tested across laboratories, enabling a cumulative 
understanding of their properties across test conditions 
DQG�VWXG\�SRSXODWLRQV�b7KLUG��VRPH�SUHGLFWLYH�PRGHOV�FDQ�
EHbSURVSHFWLYHO\�DSSOLHG�WR�QHZ�LQGLYLGXDO�SDUWLFLSDQWV��
ZKLFK�LV�FULWLFDO�IRU�FOLQLFDO�DQG�OHJDO�DSSOLFDWLRQV�b)RXUWK��
well-defined predictive models can serve as a means of 
bringing together basic and clinical research, as diverse 
UHVHDUFKbJURXSV�FDQ�FRPPXQLFDWH�ZLWK�HDFK�RWKHU�
through tests of predictive models, facilitating translation 
of findings from one setting (e.g., basic research) into new 
contexts (e.g., clinical assessment).

Conclusions
Recent advances have provided promise and hope 

that we can use neuroimaging to better understand 
the human mind, including the neurophysiology that 
underlies behavior and brain-related illnesses. However, 
a wide gap still exists between neuroimaging data and 
the mental processes we want to measure. Part of the 
problem is that we do not have neuroimaging markers 
that are sensitive and specific enough to accurately 
LQGLFDWH�ZKHQbD�SDUWLFXODU�FODVV�RI�PHQWDO�SURFHVV�LV�
engaged. The predictive mapping approach we outline 
KHUH�FDQ�EH�XVHG�WR�GHYHORSbQHXURLPDJLQJ�PDUNHUV�
WKDW�KDYH�EHWWHU�VHQVLWLYLW\�DQG�VSHFLILFLW\bFRPSDUHG�
WR�WKH�WUDGLWLRQDO�XQLYDULDWH�PDSSLQJ�DSSURDFK�b7KH�
SUHGLFWLYH�PDSSLQJ�DSSURDFK�FDQ�DOVRbSURYLGH�SUHFLVHO\�
defined predictive models that can be prospectively 
tested in new individuals and studies, and thereby turn 
the predictive models into research products and/or 
clinical tools. This characteristic can allow neuroimaging 
PDUNHUV�WR�EHbHDVLO\�DFFHVVHG�DQG�WHVWHG�E\bRWKHU�
researchers and laboratories, promoting replicability 
DQG�IDFLOLWDWLQJbWUDQVODWLRQ�IURP�ODERUDWRU\�WR�FOLQLF�b$OO�
together, the predictive mapping approach has the 
SRWHQWLDO�WR�IDFLOLWDWHbQHXURLPDJLQJ�PDUNHU�GLVFRYHU\�DQG�
validation for both basic and clinical science.
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DSSURDFK�IRFXVHV�RQbGHYHORSLQJbRQH�XQLILHG�SUHGLFWLYH�
model based on brain-wide patterns of brain activity. 
,Q�WKH�SUHGLFWLYH�PDSSLQJ�DSSURDFK�bPDFKLQH�OHDUQLQJ�

techniques become crucial because analyses based on 
large-scale population codes are subject to the high-
dimensionality problem. High-dimensional data, in which 
there are  many more predictors than observations 
(           ; often called the “curse of dimensionality”), causes 
problems with model optimization because the parameter 
space is underconstrained by the data (16). Some machine 
learning algorithms, such as support vector machines 
and regularized regression, can provide stable prediction 
models even for the high-dimensional data with a 
JXDUDQWHH�RI�JRRGbJHQHUDOL]DWLRQ�FDSDFLW\��17, 18��b

Precisely defined model and prospective testing: 
benefits for translational research

In addition to benefits in sensitivity and specificity, 
the predictive mapping approach can provide precisely 
defined models that can be prospectively tested on new 
datasets.

In traditional mapping approaches, replication and 
hypothesis testing depends heavily on anatomical 
definitions that are often heuristic and ambiguous, leading 


