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Abstract
Recent studies indicate that a significant reorganization of cerebral networks may occur in patients with chronic pain, but
how immediate pain experience influences the organization of large-scale functional networks is not yet well characterized.
To investigate this question, we used functional magnetic resonance imaging in 106 participants experiencing both noxious
and innocuous heat. Painful stimulation caused network-level reorganization of cerebral connectivity that differed
substantially from organization during innocuous stimulation and standard resting-state networks. Noxious stimuli
increased somatosensory network connectivity with (a) frontoparietal networks involved in context representation, (b)
“ventral attention network” regions involved in motivated action selection, and (c) basal ganglia and brainstem regions. This
resulted in reduced “small-worldness,” modularity (fewer networks), and global network efficiency and in the emergence of
an integrated “pain supersystem” (PS) whose activity predicted individual differences in pain sensitivity across 5 participant
cohorts. Network hubs were reorganized (“hub disruption”) so that more hubs were localized in PS, and there was a shift
from “connector” hubs linking disparate networks to “provincial” hubs connecting regions within PS. Our findings suggest
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that pain reorganizes the network structure of large-scale brain systems. These changes may prioritize responses to painful
events and provide nociceptive systems privileged access to central control of cognition and action during pain.

Key words: functional network, hub disruption, inter-system connectivity, immediate pain, reorganization

Introduction
Pain is a conscious experience defined as “an unpleasant
sensory and emotional experience associated with actual or
potential tissue damage, or described in terms of such damage”
(https://www.iasp-pain.org). Noxious stimuli engage multiple
systems distributed across the brain, including the insula,
anterior cingulate cortex (ACC), amygdala (sometimes grouped
under the rubric of “salience network” (SN) or “ventral attention
network”), and somatosensory areas S1, S2, and dorsal posterior
insula (part of the “somatomotor network”), thalamus, and
brainstem. The involvement of multiple functional systems
suggests cooperation and integration in processing pain-related
information, which may provide a substrate for generating
the conscious experience of pain and prioritize access to
action-planning systems (Bornhövd et al. 2002; Apkarian
et al. 2005; Tracey and Mantyh 2007; Bastuji et al. 2008; Boly
et al. 2008). Advances in functional brain imaging have allowed
researchers to characterize patterns of functional activation
and deactivation to painful stimuli across different types of
evoked pain (Davis et al. 1997; Kwan et al. 2000; Bornhövd et al.
2002; Wager et al. 2013; Favilla et al. 2014; Krishnan et al. 2016),
predict pain intensity from patterns of brain activity (Wager et al.
2013; Atlas et al. 2014; Favilla et al. 2014; Wiech 2016; Lindquist
et al. 2017), and identify brain mediators of pain (Atlas et al.
2010, 2014; Woo et al. 2015). Though important, these findings
chiefly concern patterns of brain activity and do not address the
issue of how nociception and pain alter brain connectivity and
modularity in functional brain networks.

The important issue of pain-related alterations in brain
connectivity and network structure has recently been inves-
tigated in a series of important studies that have identified
alterations in brain connectivity in both evoked experimental
and chronic pain (Zaki et al. 2007; Napadow et al. 2010; Farmer
et al. 2012; Jensen et al. 2012; Kong et al. 2013; Kucyi et al. 2014;
Martucci et al. 2014; Kucyi and Davis 2015; Hemington et al.
2016; Kutch et al. 2017). For example, chronic pain is associated
with abnormalities in brain functional connectivity (FC), that
is, increased FC between medial prefrontal cortex (mPFC) and
regions that receive nociceptive afferents, including ACC and
insula (Cauda et al. 2009; Napadow et al. 2010; Baliki et al.
2014; Kucyi and Davis 2015). At the network level, chronic
pain is associated with reduced task-related deactivation in
the “default mode” network (DMN, which includes mPFC)
(Baliki et al. 2008, 2011); reduced positive correlations among
“default-mode” regions (Kornelsen et al. 2013); reduced negative
correlations between “default mode” and other brain networks
(Baliki et al. 2011), particularly the “SN” (which contains
the anterior insula) (Hemington et al. 2016); and increased
correlations between the anterior and posterior insula with
“default mode”- and “ventral attention”-related areas (Napadow
et al. 2010; Tagliazucchi et al. 2010; Loggia et al. 2013).

Some studies have begun to analyze connectivity patterns
in pain-related networks from the vantage point of network
topology, using concepts from graph theory (Sporns and Zwi
2004; Bullmore and Sporns 2009). Graph-theoretic analysis
provides rich quantitative measures (Rubinov and Sporns 2010)
that efficiently describe the segregation and integration of

complex brain networks. Graph theoretic metrics serve as high-
level topological features that can characterize complex alter-
ations in neurodegenerative, neurological, and psychiatric disor-
ders (Bullmore and Sporns 2009; Heuvel and Sporns 2013; Fornito
et al. 2015; Yao et al. 2015; Sha et al. 2017; Zheng et al. 2018). Pain
studies have begun to identify altered network organization
in chronic pain patients compared with normative samples
(Mano and Seymour 2015; Mansour et al. 2016; Mano et al. 2018).
For example, Mano et al. found evidence for several global net-
work changes in chronic low back pain patients, including hub
disruption (reorganization of regions that are highly connected),
reduced mean clustering coefficient (a measure of whether
regions are tightly inter-connected into functional modules),
and reduced betweenness-centrality (incidence of “connector
nodes” that connect multiple networks). These changes were
replicated across three separate patient samples (Mano et
al. 2018). Together, previous pain-related connectivity studies
point to increased cross-talk among networks and reduced
functional specialization in chronic pain, and particularly
greater connectivity between the DMN and SN, which are usually
anticorrelated (e.g., increased DMN connectivity with putatively
pain-related regions in the insula).

Other studies have shown that resting-state functional con-
nectivity predicts later symptom improvements. For example,
increased connectivity among predominantly left frontoparietal
network regions has been reported to predict symptom improve-
ments 3 months later in patients with urologic chronic pelvic
pain (Kutch et al. 2017). Increased connectivity between lateral
prefrontal cortex and other regions (Tétreault et al. 2016), and
between mPFC and insula (Hashmi et al. 2012), has been found
to predict the magnitude of subsequent placebo responses in
chronic back pain patients.

In this article, we attempted to address two inter-related
issues not addressed in previous studies. First, the vast major-
ity of connectivity studies have identified changes related to
chronic pain, and to our knowledge, there has been no system-
atic characterization of network topology in evoked experimen-
tal pain. Understanding the network topology of evoked pain
would provide an important basis for comparing experimental
and chronic pain. Second, previous studies of chronic pain have
not separated connectivity related to pain experience itself from
connectivity changes related to the “kinds of individuals” who
experience pain. Pain patients differ from controls in many
ways, including medication status, depression and anxiety, exer-
cise and body weight, and socioeconomic status, among other
variables. Thus, it is desirable to identify connectivity changes
directly associated with nociception and pain experience [e.g.,
(Seminowicz and Davis 2007; Zaki et al. 2007)], which may be
compared with the more complex set of changes associated with
individuals with chronic pain conditions.

We analyzed functional magnetic resonance imaging (fMRI)
data from 5 independent studies, with a total of 106 partici-
pants, to construct group-level functional networks for noxious
(painfully hot) and innocuous (non-painful warmth) thermal
stimuli and characterize the differences between them. Rather
than focusing on time series connectivity, we estimated func-
tional connectivity matrices and network topology measures
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based on “inter-individual differences” (He et al. 2007, 2008;
Wager et al. 2007; Evans 2013; Palaniyappan et al. 2015; Yao
et al. 2015). This (a) constrains connectivity estimates to brain
responses to painful (or nonpainful) stimulation and (b) esti-
mates networks such that “connected” regions are coactivated
in the same individuals, making network estimates more rel-
evant for individual differences in pain sensitivity. Other ben-
efits of estimating connectivity in stimulus-evoked responses
averaged over trials is that it enhances the signal-to-noise ratio
for pain-related signals, reduces susceptibility to intrinsic neu-
ral dynamics and time series artifacts (Simony et al. 2016),
and reduces extraneous sources of inter-individual variability
relative to resting-state studies (Geerligs et al. 2015; Finn et al.
2017). Participants were selected to have matched numbers of
noxious and innocuous thermal stimuli, to allow comparison of
activity and individual differences between the two conditions.
We then calculated graph theoretic measures, including small-
world-ness, modules and hub nodes, and connectivity patterns,
to examine stimulus intensity-dependent and pain-dependent
alterations in network organization. Overall, the results pro-
vided a coherent picture of reduced network diversity and com-
plexity (across multiple graph-theoretic measures) during pain,
paralleled by increased integration in particular cortical and
subcortical systems.

Materials and Methods
Participants

For network analysis, we used fMRI data from 119 healthy par-
ticipants (before exclusion criterion were applied) from 5 pub-
lished studies (Atlas et al. 2010, 2012, 2014; Woo et al. 2015;
Lindquist et al. 2017). All studies were approved by the insti-
tutional review board of Columbia University and the Univer-
sity of Colorado Boulder. Participants were recruited from New
York City and Boulder/Denver Metro Areas, and all participants
provided written informed consent. Participants with psychi-
atric, physiological or pain disorders, neurological conditions,
and MRI contraindications were excluded prior to enrollment.
Preliminary eligibility of participants was determined through
an online questionnaire, a pain safety screening form, and a
fMRI safety screening form. Descriptive information about age,
gender, and other features of each study are provided in Table 1.
In all studies, participants received a series of contact-heat stim-
ulus using a TSA-II Neurosensory Analyzer (Medoc Ltd) with a
16 mm Peltier thermode endplate (Study 7:32 mm) and rated the
magnitude of pain they felt on a visual analog scale (VAS) after
stimulus offset. The number of trials, stimulation sites, rating
scales, intensities and durations of stimulus, and the specific
psychological manipulation each study comprised varied across
studies as shown in Table 1 (also see Supplementary Table 1
for details about the fMRI acquisition parameters). Notably, the
psychological and physical manipulations that influenced pain
(except for stimulus intensity) were irrelevant for our analy-
ses, as our focus was on investigating the difference between
noxious and innocuous stimuli in functional network organiza-
tion, and all psychological manipulations were balanced across
(orthogonal to) noxious and innocuous conditions.

Image Preprocessing

Functional images were preprocessed using Statistical Para-
metric Mapping (SPM) software (http://www.fil.ion.ucl.ac.uk/
spm/). Our goal was not to maintain perfect homogeneity

in analyses across studies, but rather to establish broad
generalizability across a range of studies with standard, but
different, state-of-the-art methods. This has disadvantages in
spatial precision (though we focus on pre-defined parcels, which
mitigates this drawback) but has advantages in (a) establishing
generalizability [e.g., (Kragel et al. 2018; Mano et al. 2018;
Zunhammer et al. 2018)] and (b) maintaining consistency with
published and quality-checked final analyses for each study.
However, the normalization template and general linear model
framework used were identical for all studies.

Briefly, structural T1-weighted images were coregistered
to the average functional image for each subject with the
mutual information-based coregistration method in SPM and
were then normalized to Montreal Neurological Institute (MNI)
space (avg152T1.nii). Functional images were corrected for
slice acquisition timing and motion; warped to MNI space
by applying motion parameters estimated from coregistered,
high-resolution structural images; interpolated to 2 × 2 × 2 mm3

voxels; and smoothed with an 8-mm full width at half maximum
(FWHM) Gaussian kernel.

Prior to processing, global outlier time points were identi-
fied by calculating the mean and standard deviation (SD) of
intensity across voxels for each image. Mahalanobis distances
were computed for the matrix of slice-wise mean and SD values
(concatenated) by functional volumes, and values with signifi-
cant χ2 value after multiple comparison correction (Bonferroni)
were considered outliers. The outputs of this procedure were
later included as nuisance covariates in the first-level models.
The number of removed volumes in each study can be found
in referenced publications but averages around 1% of functional
volumes (Atlas et al. 2010, 2012, 2014; Woo et al. 2015; Lindquist
et al. 2017).

Single-Trial Analyses

For studies except Study 3, magnitudes of single-trial responses
were quantified by constructing a general linear model
(GLM) design matrix with separate regressors for each trial.
Boxcar regressors, convolved with the canonical hemodynamic
response function (HRF), were constructed to model cue, pain,
and rating periods in each study. One regressor was included
for each trial, as well as several types of nuisance covariates
(images with high artifact/outlier scores as defined above, head
movement parameter estimates). Because trial estimates could
be strongly affected by artifacts occurring during acquisition
(e.g., sudden motion), trial-by-trial variance inflation factors
(VIF, a measure of design-induced uncertainty due, in this case,
to collinearity with nuisance regressors) were calculated, and
any trials with VIFs that exceeded 2.5 were excluded. For Study
1, trials that exceeded 3 SDs above the mean were excluded,
and a principal components-based denoising approach during
preprocessing to minimize artifacts was employed. This step
generated single-trial estimates that reflected the amplitude
of the fitted HRF on each trial and referred to the magnitude
of anticipatory and pain-period activity for each trial in
each voxel.

For Study 3, single-trial analyses were based on fitting a set
of three basis functions, rather than on the canonical HRF. This
flexible strategy allowed the shape of the modeled HRF to vary
across trials and voxels. This procedure differed from other stud-
ies because it maintained consistency with the procedures used
in the original publication (Atlas et al. 2010) and provided an
opportunity to examine predictive performance using a flexible
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Table 1 Demographics and study information

Study Study name Sample
(included)

Sex Mean
age

Duration (s) Mean stimulation
temperature (◦C)

Trial number Rating scale

Study 1 NSF (Atlas et al. 2014) 26 (23) 9F 27.8 10 40.8, 43.5, 45.1, 47.0 35–48 0–10 VAS
Study 2 BMRK3 (Woo et al. 2015) 33 (33) 22F 27.9 12.5 44.3, 45.3,

46.3, 47.3, 48.3, 49.3
97 0–100 VAS for no pain

and pain, respectively
Study 3 EXP (Atlas et al. 2010) 17 (15) 9F 25.5 10 41.2, 44.4, 47.2 61–64 0–10 VAS
Study 4 ILCP (Lindquist

et al. 2017)
29 (24) 16F 20.4 10 44.7, 46.7 64 0–100 VAS

Study 5 REMI (Atlas et al. 2012) 14 (11) 7F 22 11 41.2, 47.1 75 0–8 VAS

basis set. The pain period basis set consisted of 3 curves shifted
in time and was customized for thermal pain responses based
on previous studies (Lindquist et al. 2009; Atlas et al. 2010).
To estimate cue-evoked responses, the pain anticipation period
was modeled using a boxcar epoch convolved with a canonical
HRF. This epoch was truncated at 8 s to ensure that fitted
anticipatory responses were not affected by noxious stimulus-
evoked activity. As with the other studies, nuisance covariates
and excluded trials with VIFs > 2.5 were included. Trials that
were global outliers (those that exceeded 3 SDs above the mean)
were also excluded. The fitted basis functions from the flexible
single-trial approach were reconstructed to compute the area
under the curve (AUC) for each trial and in each voxel. These
trial-by-trial AUC values were used as estimates of trial-level
anticipatory or pain-period activity.

Categorization Criteria of Nonpainful
and Painful Stimulus

Previous studies have shown that the threshold for specific
nociceptors is around 45◦C (LaMotte and Campbell 1978)
and have identified human pain thresholds in the range of
45–46 ◦C (Price et al. 1989). Here, we used 45.3 ◦C as a threshold
for dividing thermal stimulation into innocuous (stimulation
intensity <45.3 ◦C) and noxious (stimulation intensity > 45.3 ◦C)
conditions. Participants with both of the two conditions were
included. We excluded stimulation level of 49.3 ◦C in Study 2,
as it included only four trials per participant. We also excluded
subjects with missing heat ratings and trials delivered during
drug administration and active placebo conditions. Finally, as
our goal was to compare noxious and innocuous conditions
across the same set of participants, for datasets with multiple
stimulus intensities within the noxious or innocuous range,
we randomly selected one stimulus level for analysis. A
total of 106 participants remained in the final analysis.
Detailed information regarding pain ratings and stimulation
intensity of the included participants are shown in Supple-
mentary Figure 1. Painfully hot stimuli caused significant
increases in intensity ratings relative to nonpainful warmth
and were in the clearly noxious stimulus range (46–49 ◦C),
whereas warm stimuli were below the threshold for specific
nociceptors.

Functional Network Construction

Figure 1 provides a flowchart of network construction. The
single-trial images were generated by constructing a GLM over
the entire time-course of the study for a given person, with one
regressor per trial. The trial-level regressors modeled activity

during each 10-s stimulation epoch, which were convolved with
the HRF. To reduce differences in image scaling across studies,
we rescaled the activity of all included trials for the selected
stimulus intensity study-wise, by the study’s global average
median absolute deviation (MAD). Then, trial-level maps were
averaged at the same stimulation intensity within each subject
to yield 1 pain-associated and 1 no pain-associated image for
each participant. Average activity was calculated for each of 274
brain parcels as defined in a recent atlas (the “Brainnetome”
atlas) (Fan et al. 2016) with 210 cortical, 36 subcortical, and 28
cerebellar regions spanning the brain (K = 274 in total). These
averages were concatenated into a 274 × N matrix, where N
is the number of subjects (i.e., 106). We then calculated a 274
× 274 matrix of Pearson correlations among regions (37 401 total
connections). Prior to connectivity estimation, linear regression
was applied within each study to remove the effects of white
matter (WM), cerebral spinal fluid (CSF), and global grey matter
(GM) signals, which were also rescaled and averaged across
trials, from the regional activity estimates (i.e., the subjects
× regions matrix for each of high-pain and low-pain condi-
tions). Because the individual differences level is the level
of primary interest here, regression at this level provides
results that most closely related to the variables of interest.
This is in addition to covariates included in the first-level
models for head movement, spikes, and artifacts detected
as outliers in global signal and root mean square successive
deviations (dvars). We chose to regress out GM because previous
studies have suggested that the removal of global GM signal
may have little influence on community structure but can
increase the signal-to-noise in task-related graph theoretic
measures (Herrera et al. 2017). Graph metrics should thus be
interpreted as inter-regional covariation around the whole-brain
mean.

Module Detection

The optimal division of module structure is the nonoverlapping
communities with maximization of intra-module edges and
minimization of inter-module edges. Both negative connections
and positive connections with weights near zero were excluded,
because these links may represent spurious functional connec-
tions (Power et al. 2010; Rubinov and Sporns 2010). False discov-
ery rate (FDR) correction with q = 0.05 was performed to remove
the nonsignificant positive links by setting weights of links with
P values above the threshold to 0 (Chen et al. 2008), and the
resulting networks were used for module detection (Power et al.
2011). In this study, all nodes in the networks after thresholding
were connected, and the link densities were close to 10% (9.23%
and 9.97% for innocuous and noxious condition, respectively).
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Figure 1. Pipeline of network construction and analysis. (A) For each study, pain-related brain activity maps for each trial (from single-trial regression) were rescaled
by dividing by the MAD across the entire study, avoiding artifacts related to differences in field strength and other analysis choices that impact the scale of activation
maps. The rescaled images were then averaged across trials delivered at the same stimulation intensity within each subject, yielding an average map for each person
for each of high- and low-pain intensity. Then, a brain template including 274 brain regions was used to extract the average in-region activity from each trial-averaged

image, yielding an N-participants (N = 106) × 274 matrix of pain-related activity values. The global averages of GM, WM, and CSF signals were regressed out from the
regional activity separately for each study. The functional connectivity between pairs of brain regions was then calculated by measuring the Pearson correlations
across individuals, separately for high-pain and low-pain conditions. (B) The optimal module partitions were found based on a weighted network by clustering nodes

that are densely connected, using correlation values as weights after retaining only edges with significant positive connectivity (q < 0.05, FDR corrected). These were
then applied to both weighted and binary networks at multiple levels of network sparsity to investigate the differences in network-level graph metrics.

The module detection algorithm is based on maximizing the
modularity measurement Q for the network (Newman 2006),
which is defined as:

Q = 1
lw

∑
i,j∈K

(
wij −

kw
i kw

j

lw

)
δmi ,mj

where lw is the sum of all weights in the network, wij is the
connection weight between node i and j, kw

i is the weighted
degree of node i, and mi is the module to which node i belongs
(δmi ,mj = 1 if mi = mj, and 0 otherwise).

To examine whether the detected modules were stable across
different link density, we varied the thresholds in the range
of [q < 0.01 (FDR corrected), q < 0.05 (FDR corrected), P < 0.001,
P < 0.01, P < 0.05]. Module detection algorithm was performed to
the thresholded networks with weighted edges (positive only)
to estimate the partitions of each condition under different link
densities.

Network Properties

Prior to graph theoretic analysis, the connection matrix was
thresholded by using a certain threshold. Nodes were considered
to be “neighboring” if their edge survived from thresholding. To
characterize the robustness of our analyses, network properties
of both weighted and binary networks were calculated and com-
pared. Following the traditional approach (Rubinov and Sporns
2010; Power et al. 2011; Power et al. 2013; Xu et al. 2016), negative
links were excluded from our analysis because the biological
meaning of negative functional connectivity remains unclear
(Parente et al. 2018). However, in this case, we did not observe
strong negative connectivity (e.g., strength >−0.6). For weighted
network, we thresholded the network by preserving only posi-
tive links with P < 0.01 to remove the near zero links that may
represent spurious functional connections (Power et al. 2010;
Rubinov and Sporns 2010). For binary network, we performed
analyses with varying network sparsity (retaining the strongest
10–25% of links in 5% increments) and setting suprathreshold
links (edges) to 1 and the rest to 0. This range of sparsity was cho-
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sen because it allows for the creation of fully connected graphs
that permit a reasonable estimation of the graph metrics during
the bootstrap test (see Statistical analysis section). The results
are identical whether one includes only positive correlations
before binarization or not. In addition, since we focus on task-
related responses that are less subject to spurious connectivity
from time series artifacts than the more common time series
connectivity approach, a higher density threshold is appropriate
(e.g., started from 10% density).

Four common properties of the graph that reflect local and
global organization as well as the architecture of the graph,
including the clustering coefficient (a measure of graph segrega-
tion), characteristic path length (a measure of graph integration),
small-world-ness (evaluates the network organization compare
to a matched random graph), and modularity (Q, measures the
decomposability of a graph into several sparsely interconnected
communities), were extracted for both weighted and binary
graphs. Though some of them (e.g., clustering coefficient and
modularity) may represent some common information, each
property contributes unique information to the whole picture
of network organization. Notably, for binary graphs, we aver-
aged the graph metrics across link densities to ensure that the
differences between conditions were not due to the choice of
link density (Lynall et al. 2010; Cohen and D’Esposito 2016;
Kaplan et al. 2019).

The clustering coefficient of a node is defined as the average
intensity of all triangles associated with each node for weighted
network and the number of suprathreshold edges between
neighbors of this node divided by all possible edges between its
neighbors for binary network. The average cluster coefficient, C,
averages this value across nodes. Characteristic path length, L,
is the shortest path between pairs of nodes, averaged across all
pairs. The higher L value indicates longer route, on average, from
node to node, resulting in lower efficiency of information trans-
fer along the graph. The modularity of binary network can be
calculated through the equation for weighted network as men-
tioned above, in which degree (k) of node i is the number of edges
that connected to this node. These network properties were
calculated using the Brain Connectivity Toolbox (Rubinov and
Sporns 2010).

Typically, a small-world network shows more clustering than
a random graph but maintains a similar shortest path length
(Watts and Strogatz 1998). In other words, a small-world net-
work should meet the following criteria: γ = Creal/Crandom > 1 and
λ = Lreal/Lrandom ≈ 1, where Creal and Lreal are averaged clustering
coefficient and averaged characteristic path length of the real
network, respectively; and Crandom and Lrandom are averaged
clustering coefficient and averaged characteristic path length
of a matched random network, respectively, generated by pre-
serving the degree of each node but randomizing the nodes’
connections 100 times. Small-world-ness is defined as σ = γ /λ,
and a network with σ > 1 indicates that the network is “small-
world.”

Hub Region Detection

Degree centrality was utilized to measure the nodal importance,
which is calculated as the sum of edges connected to a node.
Here, nodal degree was calculated based on the weighted thresh-
olded network that only preserved positive links with P values
<0.01. Nodes with Z-scored degree value >1.5 were defined
as hubs of the whole brain. Within-module degree (WD) and
participation coefficient (PC) were also calculated as measures

related to the role each hub node plays in the network (Guimerà
and Amaral 2005a, 2005b). The WD value of node i is defined

as WDi = km
i −km

σ km , where km
i is the weighted degree of node

i within its own module (m), km is the average of the degree
within module m, and σ km

is the of degree of nodes in module

m. The PC value of node i is defined as PCi = 1 − ∑M
m=1

(
km

i
ki

)2
,

where M is the number of modules, and ki is the total weighted
degree of node i. Nodes with high WD and low PC values are
“provincial” hubs connected to other nodes in the same module
(cluster), whereas nodes with low WD but high PC values are
“connector” hubs that link different modules together. Here, we
defined provincial hubs as those with a z-score z (WD) ≥ 1.5 and
z (PC) ≤ 0.3, which primarily connect to nodes within their own
modules; and connector hubs as those with z (WD) < 1.5 and z
(PC) > 0.6, which predominantly link different modules. Similar
definition of provincial hub can also be found in (Cohen and
D’Esposito 2016).

Assortativity coefficient, defined as correlation between the
strength of nodes (degree) on opposite sides of a connection
(Newman 2002), was utilized to investigate whether noxious
stimuli influence the assortativity of the network structure.
Nodes in an assortative network tend to link with other nodes
with similar strength, for example, hub regions are more
strongly clustered with other hub regions, making the network
more robust to disruption (Newman 2002; Bassett et al. 2008).

Statistical Analysis

We performed statistical tests on the difference between
noxious and innocuous stimulus on brain activity, functional
connectivity, and network measures. For brain activity, we
performed paired t-tests (P < 0.05, Bonferroni connected across
parcels) on noxious versus innocuous stimulation. For between-
group differences in functional connectivity, Steiger’s z test
(Steiger 1980) for dependent correlations was performed,
with FDR correction at q < 0.05. For network properties, the
bias corrected, accelerated bootstrap tests were performed
on painfully hot versus nonpainful warm paired (within-
person) differences. This test is preferred because of the
expected nonnormal distribution of differences in network
measures. In each bootstrap iteration, participants were
resampled with replacement, and paired noxious versus
innocuous differences in each network property (e.g., C) was
calculated. This procedure was repeated 5000 times, and
two-tailed, uncorrected P values were calculated from the
bootstrap confidence interval. FDR correction with q < 0.05 was
used for correcting multiple comparisons across connectivity
densities.

Contrasting Subjectively Painful versus
Nonpainful Stimuli

We used Study 2 to investigate how changes in network
organization varied according to subjective feelings of pain.
In Study 2, participants experienced 6 levels of thermal
stimuli and were asked to judge whether each individual
stimulus was painful or not (Woo et al. 2015). They then
rated warmth or pain on separate 100-point VAS scales,
coded here as (1–100) or (101–200), respectively. For each
participant, we grouped trials rated as nonpainful and those
rated as painful and averaged these within condition. These
averages were used to identify networks based on individual
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Figure 2. Parcellation of the brain and significant activation (yellow/orange)

and deactivation (blue) for noxious versus innocuous stimulation. Red and blue
colors indicate the significance of activity (paired t test P < 0.05, Bonferroni
corrected).

differences and to contrast explicitly painful versus nonpainful
conditions.

In addition to the aforementioned analysis, normalized
mutual information (NMI) (Kuncheva and Hadjitodorov 2004;
Alexander-Bloch et al. 2012) was utilized to quantify the
similarity of modular partitions between subjective evaluation
and objective categorization of pain. NMI is a widely used
measure to assess pairwise difference between modular
partitions, defined as:

NMI (A, B) =
−2

∑MA
i=1

∑MB
j=1Nij log

( NijN
NiNj

)
∑MA

i=1 Ni log
(

Ni
N

)
+ ∑MB

j=1Nj log
( Nj

N

)

where A and B are the partitions of two networks; MA is the
number of modules in A; N is the number of nodes in the
network; Ni and Nj represent the number of nodes in module i of
A and module j of B, respectively; Nij is the number of nodes that
the two modules have in common. The NMI lies between 0 and
1, a value close to 1 implies that the two partitions are relatively
similar.

Results
Regional Activity for Nonpainful Warm versus Painfully
Hot Stimuli

The comparison pattern of brain activation differences between
innocuous and noxious stimulation is shown in Figure 2. Com-
pared to innocuous stimuli, noxious stimuli significantly acti-
vated bilateral insular and opercular cortices, ACC, S2, ventral
and caudal inferior frontal gyrus, medial superior frontal gyrus
(SFG), premotor cortex, right anterior superior temporal gyrus
(STG), some subcortical tissues (e.g., thalamus), and cerebellum.
Significant deactivation induced by painfully hot stimuli was
found in the left postcentral gyrus, ventromedial prefrontal cor-
tex (vmPFC), left middle and inferior temporal gyrus, right STG,
medial precuneus, and bilateral occipital cortices (paired t test,
Bonferroni corrected, q < 0.05). This pattern is consistent with
previous findings on evoked pain (Treede et al. 2000; Bushnell
and Apkarian 2006; Kong et al. 2010; Mouraux et al. 2011; Wager
et al. 2013; Favilla et al. 2014; Tanasescu et al. 2016; Lindquist et
al. 2017).

Figure 3. Comparison of network properties between innocuous and noxious
stimulations. The network metrics of both weighted and binary networks were
extracted. Metrics of weighted network were extracted from networks that only

preserved positive links with P < 0.01, whereas metrics of binary networks are
the average of the graph metrics across link densities (from 10% to 25% in 5%
increments). Bars show the mean value and SD from the bootstrap procedure.
(A) Both networks show small-world-ness, but the small-world architecture is

disrupted during pain. (B–D) Increased average clustering coefficient (C) and
average characteristic path length (L), and decreased modularity (Q) under
noxious heat stimulus. Asterisk indicates the P value exceeds the threshold
(bootstrap test, P < 0.05).

Altered Network Properties Induced by Noxious Stimuli

Results from the 5000 paired-sample bootstrap test (see Mate-
rials and Methods) showed that noxious (vs. innocuous) stimu-
lation significantly influenced the overall organization of func-
tional networks. We found that increased stimulation inten-
sity caused significant increases in both the brain-wide aver-
age shortest path length and clustering coefficient (P < 0.05,
FDR corrected, see Fig. 3A,B), resulting in reduced small-world-
ness (Fig. 3C). This indicates that brain regions are more locally
clustered and less globally connected across local clusters (i.e.,
reduced global efficiency). These changes are coherent in point-
ing to more tightly clustered results “within” networks and
reduced global connectivity “between” functional networks. We
unpack these global changes in more detail below.

Reorganized Modular Architecture during
Noxious Stimuli

By applying the module detection algorithm, we found signifi-
cantly lower modularity values (Q) during pain, suggesting pain
integrates brain systems into fewer functional communities (i.e.,
clusters) (Fig. 3D). Eight distinct modules were identified in the
innocuous condition when preserving only significant positive
connections (connections with q < 0.05, FDR corrected) in the
network, whose spatial distribution is shown in Figure 4A,B
(different colors indicate different modules). These modules
are consistent with intrinsic functional subnetworks identi-
fied in other studies, including networks heuristically termed
the cognitive control network (CCN, in red), “default mode”
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Figure 4. The detected functional systems of each condition. (A and B) Visualization of eight functional systems that were detected using network with significant
positive connections (P < 0.05, FDR corrected) under innocuous stimuli. (C) The coherence modular structure under innocuous stimuli thresholded by using various P

values [q < 0.01 (FDR corrected), q < 0.05 (FDR corrected), P < 0.005, P < 0.01, P < 0.05]. Brain regions belong to the same functional system across thresholds are shown
in the same color. The partitions are coherent across thresholds but show a tendency to merge as the threshold P value increases. (D) Z-scored activities in each
system during innocuous stimulation. (E and F) Functional systems detected under painfully hot stimuli. (G) The coherence modular structure under noxious stimuli
thresholded by using various P values [q < 0.01 (FDR corrected), q < 0.05 (FDR corrected), P < 0.005, P < 0.01, P < 0.05]. Brain regions belong to the same functional system

across thresholds are shown in the same color. (H) Z-scored activity in each system during noxious stimulation. (I) Comparison of module numbers of the two conditions
(bootstrap test, P < 0.05). Bars show the mean value and SD from the bootstrap procedure.

network (DMN, in orange), sensorimotor network (SMN, in yel-
low), insular-opercular “ventral attention” or “salience” network
(ION, in gold), a temporal system (TN, in light green), visual
function (VN, in dark green), a subcortical network (SCN, in light
blue), and a cerebellum system (CBN, in blue). These system
partitions showed high coherence across multiple thresholds

(Fig. 4C). In addition, CCN, ION, and SCN were positively activated
under warm stimuli, whereas some regions of DMN and VN were
deactivated (Fig. 4D).

By contrast, clustering during noxious stimulation resulted
in four modules (Fig. 4E,F), which showed high coherence across
multiple thresholds (Fig. 4G), and were significantly fewer
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Figure 5. Altered connections and hub regions under noxious stimuli. (A) Visualization of the altered connections under noxious stimuli. The lines indicate more positive

(red) and negative (blue) connectivity during noxious versus innocuous stimulation. Colors in the outer ring indicate the functional systems that each brain region
belongs to. (B) Visualization of whole-brain hubs (z-scored degree > 1.5) under nonpainful warmth and painfully hot stimulation, respectively. The colors indicate the
network membership as in (A). During pain, all whole-brain hubs are contained within the PS. (C) Differences in assortativity between innocuous and noxious stimuli.
Noxious stimulation significantly increases the assortativity of the network (P < 0.01). (D) Brain regions with the highest regional activity (averaged across participants)

also had a higher degree on average (r = 0.55, P < 0.001). Conversely, however, this implies that only 30% of the variance in degree is explained by average activity, and 70%
is unexplained. The correlation under noxious stimuli (rpain = 0.64, Ppain < 0.001) is greater than the correlation in warm condition (rnopain = 0.47, Pnopain < 0.001). (E) The
distribution of provincial hubs and connector hubs for each condition. The dashed lines indicate the threshold defining provincial hubs (z (WD) = 1.5, z (PC) = 0.3) and
connector hub z (WD) = 1.5, z (PC) = 0.6). Provincial hubs are more frequent with painful stimulation, and connector hubs are more frequent with nonpainful stimulation.

than during innocuous stimulation (Fig. 4I, P < 0.05, bootstrap
test). Specifically, an integrated “pain-related super-system”
(PS)—so termed because it was the only module of the 4
to be significantly activated for painful events (Fig. 4H and
Supplementary Fig. 2)—included most of the ION and SCN
and components of the CCN (e.g., ACC) and SMN. Three
other systems (OS) were also detected (Fig. 4F). OS1 included
most of CCN and parts of DMN and was neither activated
nor deactivated during painful versus innocuous stimulation
(Fig. 4H). OS2 included most of DMN and several regions of
TN, VN, and ION and was significantly deactivated during pain
(Fig. 4G and Supplementary Fig. 2). OS3 included most of SMN,
VN, and CBN and was neither activated nor de-activated during
painful stimulation.

Analysis of individual differences in reported pain intensity
during noxious stimulation also yielded significant relation-
ships across individuals and studies. For analysis across the
5 studies, the average activity with PS was correlated with
increased average pain intensity (r = 0.21, P < 0.05), and OS2
activity was negatively correlated with pain intensity (r = −0.19,
P < 0.05) (see the black line in Supplementary Fig. 3). Together,
multiple regression using the average of PS and OS2 to predict
pain yielded a multiple correlation of r = 0.39 (P < 0.0001). These
findings extend earlier work showing correlations between
brain activity and perceived pain (Coghill et al. 1999; Koyama
et al. 2005; Baliki et al. 2009; Wager et al. 2013; Atlas et
al. 2014). Specifically, these findings extend earlier studies
by demonstrating (a) prediction of individual differences by
connectivity in a reproducible set of networks, (b) a much larger
sample size, and (c) generalizability across multiple studies. No

significant correlation was found between the pain ratings and
activity in other subsystems. Interestingly, the alterations in
network structure indicate that these communities likely could
not be identified in resting-state studies.

Differences in FC with Painful Heat versus
Nonpainful Warmth

Significant connectivity differences between innocuous versus
noxious stimulation (q < 0.05, FDR corrected) are shown in
Figure 5A. Red and blue connections indicate positive and nega-
tive changes during pain, respectively (see also Supplementary
Table 2 for details). During noxious stimulation, connections
within the PS became more positive. The increased connectivity
integrated several components within the PS, including the CCN
(e.g., mPFC, area 44 and 45, and ACC), ION, SMN (e.g., primary
sensory cortex), and SCN. Other increased connections were
found mainly between lateral SMN and VN within OS3. We also
found most of the connections that connected the PS with OS
were decreased, such as connections with hippocampus and
temporal cortices.

These altered connectivity patterns further induced
decreased shortest path length within each subsystem and
increased shortest path length between different subsystems
(Supplementary Fig. 4A), which may result in rises of local
communication but reduction in global efficiency. In addition,
the increased connectivity within the PS significantly improved
its communication efficiency relative to OS2 and OS3 (P < 0.05,
bootstrap test); the increase in efficiency compared to OS1 was
marginally significant (P = 0.084, Supplementary Fig. 4B).
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Table 2 Summary of the results

Network metrics Noxious versus innocuous Painful versus
non-painful

Interpretation

Shortest path length ↑ ↑ • Noxious stimulation results in fewer
Clustering coefficient ↑ ↑ networks with more efficient intra-
Small-world-ness ↓ ↓ (∼) network connectivity and greater
Modularity ↓ ↑ resistance to disruption. Connectivity
Assortativity ↑ ns between networks is reduced. High pain

experience was associated with similar
changes. Modularity differences between
analyses may reflect competing changes
in within- and between-network
connectivity (see below)

Modules • Innocuous condition: 8
subsystems.
• Noxious condition: 4
subsystems. (Components
of the ION, SCN, CCN and
SMN were reorganized to
form the PS)

• Non-painful condition:
6 subsystems (NMI
(non-painful and
innocuous) = 0.4287).
• Painful condition: 4
subsystems (NMI
(painful and
noxious) = 0.4283).

• There are fewer modules (networks)
during painful stimulation and
high-pain experience

Hubs Whole brain • Concentrated within the
PS in noxious condition.

• Brain regions within the PS become
more densely connected during painful
stimulation• Distributed broadly

across multiple systems
in innocuous condition.

Provincial ↑ ↑ • Increased intra-module
communication

Connector ↓ ↓ • Decreased inter-module
communication

Connections Within PS ↑ ns • Increased information transfer within
the PS

Between systems ↓ • Disrupted communication between the
PS and OS(between PS and OS) ns

Notes. ns, non-significant; “∼” indicates the alteration is marginally significant.

Changes in Distribution and Function of Hub Regions
during Noxious Stimuli

Distributions of the whole-brain hub regions were also altered
during noxious stimuli, partially paralleling reports of hub dis-
ruption in chronic pain (Mansour et al. 2016; Mano et al. 2018;
Kaplan et al. 2019). As we can observe in Figure 5B, during warm
stimulation, hubs were distributed broadly across multiple sys-
tems (i.e., CCN, ION, and SCN), including regions such as medial
SFG, ventral middle frontal gyrus, STG, insula, basal ganglia,
and other subcortical tissues (colors indicate functional systems
in each condition). During painfully hot stimulation, whole-
brain hubs were located mainly within PS, including bilateral
insular-opercular cortices, mPFC, ACC, and many subcortical
(e.g., striatal) regions, and preferred to link with other hubs
rather than nonhub nodes (Fig. 5C). Similar findings were also
reported in fibromyalgia (FM) patients with high pain intensity
(Kaplan et al. 2019), which showed highly interconnected hubs
(rich club) within the PS. We also found significant positive
correlations (rinnocuous = 0.47, rnoxious = 0.64, Ps < 0.001) between
regional activity and nodal degree (Z-scored across nodes) in
both conditions (Fig. 5D).

The connector versus provincial roles of hub regions was also
quite different for innocuous versus noxious stimulation. Hub
regions in the innocuous condition were mostly connectors with
high PCs but low WDs, promoting inter-system connectivity
between modules. Hub regions during pain were mostly
provincial, with low PCs but high WDs, connecting brain regions
within the PS (Fig. 5E). The number of connector hubs in the
noxious condition was significantly lower than in the innocuous
condition (bootstrap test, P < 0.01), implying reduced informa-
tion transfer across systems outside the PS during pain. This was
consistent with findings of reduced global efficiency and the
increased shortest path length between subsystems. Thus, in
sum, pain results in significantly enhanced connections within
a “supersystem” including networks associated with affect,
attentional allocation to salient events and motivated action
selection, cognitive control and/or representation of context
and goal relevance, action initiation and valuation (e.g.,
striatum), and somatosensory perception. Conversely, pain
causes reduced connectivity with OS involved in emotion,
semantics, language, visuospatial processing, and long-term
memory.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/30/5/2804/5669985 by Sungkyunkw

an U
niversity user on 24 M

ay 2022



2814 Cerebral Cortex, 2020, Vol. 30, No. 5

Figure 6. Comparison of network properties, modular organization, and PC values of subjective painful versus nonpainful. (A) Comparisons of average clustering
coefficient (C), average characteristic path length (L), small-world-ness, and modularity (Q) between painful and nonpainful conditions. Asterisk indicates the P value

exceeds the threshold (bootstrap test, P < 0.05), “∼” indicates the difference is marginally significant. (B) Functional subsystems detected in subjective nonpainful and
painful conditions. (C) Comparison of normalized mutual information (NMI) between module segmentations under noxious and innocuous stimuli and subjective
painful and non-painful (bootstrap test, P < 0.01). (D) The role of hub regions played in each condition. The dashed line indicates the threshold (WD = 1.5, PC = 0.3)
between provincial hub and connector hub. Nodes in orange and blue indicate hub regions under painful and non-painful condition, respectively.

Altered Network Organization Related to Subjective
Pain Experience

Analyses grouping trials into subjectively painful and subjec-
tively nonpainful conditions, which were possible for one of
the studies (N = 30), yielded similar results in many respects.
Pain was associated with higher clustering coefficients and
increased path length connecting nodes (i.e., reduced global effi-
ciency), and the reduction in small-world-ness was marginally
significant (Ps < 0.085, see Fig. 6A). However, modularity was
significantly higher during painful than nonpainful trials
(Fig. 6A). The modular structure of networks when grouping
trials by subjective pain (see Fig. 6B) was similar to the structure
identified when grouping trials based on objectively noxious
stimuli (see Fig. 4F). The assortativity did not show significant
change between the two conditions. The similarity in maps
of module membership across the brain was highest for the
pairs (painful, noxious) and (non-painful, innocuous) and
significantly lower for pairs (non-painful, noxious) and (painful,
innocuous) (P < 0.001, bootstrap test; Fig. 6C), suggesting similar
reorganization mode induced by noxious stimuli and pain feel-
ing, though discrepancies in module distribution were observed.
The discrepancies, we speculated, may result from individual
differences in pain threshold; for example, some of the
participants may have experienced pain during low intensity,
nominally innocuous stimulation (intensity <45.3 ◦C). In
addition, paralleling analyses grouped by noxious versus
innocuous stimulus intensity, there was a sharp reduction
in the number of connector hubs during subjectively painful
versus nonpainful trials, as indicated by reduced PCs of the
top-ranked hubs (P < 0.01, bootstrap test, Fig. 6D). Thus, our
observations of increased clustering and shortest path length,
reduced small-world-ness, integration of multiple networks
into a “pain-related super-system,” and a shift from connector

hubs to provincial hubs were all confirmed to be related to
subjective pain reports as well as objectively defined noxious
stimulation.

More detailed analyses of changes across four levels of
reported pain (non-painful [<100 on the VAS], 100–120, 120–
150, and >150) helped explain the pattern of changes in global
network measures we observed when defining conditions based
on subjective pain (Supplementary Fig. 5). Clustering coefficient
increased and small-world-ness decreased monotonically
across four levels of reported pain. Minimum path length and
modularity were nonmonotonic, highest for intermediate levels
of pain and lower for nonpainful or very painful trials. This
is likely because as pain increases, path length decreases
within a “pain-related super-system” similar to the one we
describe above (red in Fig. 6B), but increases between modules.
Global path length averages over these changes. It is also likely
that some aspects of modular organization are driven in part
by thermosensory responses in the physiologically noxious
(≥46.3 ◦C) versus innocuous (<45.3 ◦C) range, irrespective of
self-reports. Graph measures more strongly related to noxious
stimulus intensity (vs. subjective pain) should show smaller
changes and/or different results from those based on objective
stimulus intensity, as categories defined based on subjective
pain mix noxious and innocuous stimuli. Our results show that
global path length and modularity indices show the strongest
differences, implying that they are relatively more stimulus-
related than pain-related, but that other indices track noxious
stimulus intensity and subjective pain in a similar fashion. This
study was not designed to permit a full dissociation of stimulus
intensity and subjective pain-related effects, as they are very
strongly related in healthy individuals. A full characterization
of potential differences should be undertaken in specialized
studies and patient populations.
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Discussion
The original concept of the “pain neuromatrix” (Melzack 2005)
proposed that pain served to integrate neural systems related to
somatosensation, affect and emotion, action, viscerosensation,
and homeostatic regulation. Though the term was later co-opted
as a shorthand for a set of brain regions typically activated
by noxious stimulation (Jones 1998; Peyron et al. 2000; Bush-
nell and Apkarian 2006; Tracey and Mantyh 2007; Iannetti and
Mouraux 2010), its intended spirit is perhaps better character-
ized in terms of patterns of connectivity across nociceptive and
non-nociceptive circuits. The drive to understand pain in terms
of functional connections and global network properties has led
to the concept of the “dynamic pain connectome” (Kucyi and
Davis 2015, 2017) and a number of recent papers characterize
chronic pain in terms of associations with functional connec-
tivity and network properties (Baliki et al. 2008, 2014; Cauda
et al. 2009; Napadow et al. 2010; Jensen et al. 2012; Kong et al.
2013; Ichesco et al. 2014; Kucyi and Davis 2015; Hemington et al.
2016; Mansour et al. 2016; Bosma et al. 2018; Mano et al. 2018).
This article extends this work by showing reliable patterns of
pain-related changes in connectivity across studies. The eight
functional systems we identified during innocuous stimula-
tion were broadly consistent with modules reported in resting-
state studies (Damoiseaux et al. 2006; Menon 2011; Power et al.
2011), suggesting that innocuous stimuli do not substantially
alter the functional architecture observed at rest. However, pain
resulted in substantial changes. Network analyses of stimulus-
evoked responses based on both objectively noxious stimulus
intensity and subjective pain reports revealed a coherent set of
changes in network structure (summarize in Table 2), includ-
ing (1) reduced small-world-ness, increased clustering coeffi-
cients, and a shift from “connector” hubs to “provincial” hubs,
all changes that imply increased integration “within” large-scale
functional networks and reduced connectivity across disparate
networks and (2) an integration (increased coherence) of spe-
cific networks present at rest and during innocuous stimula-
tion—namely, the CCN, ION, ‘somatomotor’ (SMN), and sub-
cortical (mainly thalamic and striatal) network—into a highly
interconnected “supersystem” (pain-related system, PS) with
increased intra-system connectivity and reduced connectivity
with OS.

Coactivation of brain regions (e.g., regions in the “pain
neuromatrix”) may result from common latent causes (e.g.,
variation in nociceptive input). In many cases, observations
of stimulus-dependent connectivity may reflect such latent
factors; we would argue that this provides a richer character-
ization of a functional brain system but does not definitively
prove that the underlying architecture is stimulus-dependent.
However, if regions are uncorrelated under one stimulus
condition (implying that they are not driven by a common latent
cause) but correlated under another condition, this provides
stronger evidence for stimulus-dependent changes in network
communication. We found that this was the case. Regions
uncorrelated during nonpainful stimulation (and typically at
rest as well) became correlated during painful stimulation.
Moreover, connectivity changes that originated from activity
changes induced by tasks are independent to the interregional
“inherent connectivity” (Duff et al. 2018), though some of the
“inherent connectivity” are likely always driven by task-induced
activity that is unmodeled or whose timing and duration
differ from the timing in the task model (Geuter et al. 2016).
Indeed, the “communication-through-coherence” theory (Fries
2005) suggests that effective interactions occur when activated

neuronal groups undergo coherent excitability fluctuations.
However, they are informative in ways that activation magnitude
alone is not, as they describe reorganization of the systems
that are coactivated in response to painful stimulation. In
addition, importantly, coactivation of a set of brain regions
does not imply that these regions are all activated to the
same degree for a given individual (i.e., that there would
be coherent individual differences) or that activation would
predict individual differences in behavior (activity in the
PS we identified predicted increased pain sensitivity across
individuals and studies, and OS2 activity predicted reduced pain
sensitivity), as we observed here. Furthermore, the structure
of which functional subnetworks are coherently activated in
subsets of individuals, and how this relates to pain sensitivity,
is largely uncharted territory. Thus, a main contribution of
this article is to show that stimulus-dependent connectivity
changes are an important, measurable property of pain-related
systems that can provide a more complete description than
measuring activity alone—and that connectivity is particularly
for characterizing individual differences in pain sensitivity. We
are largely agnostic about whether these connectivity changes
reflect a common underlying factor such as stronger input to
multiple regions or a change in network architecture; however,
two facts point to a substantive change in network architecture.
First is the fact that during painful stimulation regions outside
typical pain-processing regions begin to inter-correlate. Second,
many of these regions are not appreciably correlated at rest.
These two pieces of evidence argue against a common-factor
interpretation. Though our results were not designed to yield
identical patterns to those that might be observed based on
time series (within-person) functional connectivity, they were
designed to identify differences that are maximally related to
the processing of painful stimuli and useful for characterizing
individual differences.

One broader interpretation of these findings is that the
“supersystem” (PS) includes the systems required to perceive
and respond to bodily threats at both short and long time-
scales, from sensation to action initiation to cognitive planning
and longer-term action policies. Because the type of pain we
studied is immediate, evoked pain, systems related to long-term
memory retrieval, and broader contextualization of pain relative
to the self—for example, “default mode” DMN, including medial
PFC and hippocampus—are suppressed and disconnected
from the sensorimotor-action-planning “supersystem.” This
interpretation recognizes that pain is a complex process
involving many features beyond nociception (e.g., attention
and emotion) (Melzack and Wall 1965; Seminowicz et al.
2004; Moriarty et al. 2011) and that DMN and hippocampal
connectivity may play a different role in relation to chronic pain
[e.g., (Baliki et al. 2008; Jensen et al. 2012; Loggia et al. 2013; Kucyi
et al. 2014; Vachon-Presseau et al. 2016; López-Solà et al. 2017).

Increased Within-Module Connectivity Facilitates the
Integration and Transmission of Pain-Related
Information

The increases in connectivity within the PS coupled with
reduced inter-module connectivity may serve to prioritize
information processing-related pain and redirect attention
and processing resources toward noxious stimuli. This may
facilitate rapid responses to important exogenous stimuli.
This idea is consistent with a previous study indicating that
cerebral systems may reorganize during pain to enhance the
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processing efficiency of pain-related information, resulting in
shorter times between nociceptive stimulus-evoked cerebral
responses and behavioral reactions (Ploner et al. 2006; Tiemann
et al. 2018).

More broadly, the pain-related integration of systems we
observed may be important for integrating multiple cognitive
and affective processes essential for overall pain experience
and behavior, including encoding of spatial information and
stimuli intensity (Greenspan et al. 1999; Bornhövd et al. 2002;
Bingel et al. 2003, 2004; Arienzo et al. 2006), pain perception
(Blomqvist et al. 2000; Garcia-Larrea 2012), transfer sensory
information to motor system (Binkofski et al. 1999; Favilla et
al. 2014) and magnitude estimation (Greenspan et al. 1999;
Bornhövd et al. 2002), processing of emotional salience (Rainville
et al. 1997; Johansen et al. 2001; Farrell et al. 2005; Zaki et al.
2012), mobilizing attentional resources toward stimuli (Davis
et al. 1997), and pain-related decision-making (Wiech et al.
2010; Roy et al. 2014). The integration we observed spans
systems implementing a collection of inter-related processes
(Rainville 2002; Porro 2003).

Conversely, the disconnections we observed between sys-
tems may relate to the impairments in cognitive performance
that are well known to accompany pain (Crombez et al. 1996;
Eccleston and Crombez 1999; Seminowicz et al. 2004; Buhle and
Wager 2010; Kucyi and Davis 2015). Kucyi and Davis found that
enhanced DMN activity during pain was associated with mind-
wandering away from pain and increased ability to maintain
cognitive performance during pain (Kucyi and Davis 2015). More
direct tests of the relationship between the connectivity pat-
terns we identify here and cognitive performance during pain
should be tested in future studies.

Decreased “Bridge” Nodes Reduce Connectivity Linking
the PS and Other Subsystems

Provincial hubs are important for within-network communi-
cation, whereas connector hubs facilitate information flow
between distinct brain networks (Heuvel and Sporns 2013).
The significant shift from connector hubs during innocuous
stimulation to provincial hubs during painful stimulation
suggests that pain reduces inter-system communication. Unlike
the PS, which was strongly activated during pain, the other
three identified subsystems showed deactivation (OS2) or no
activation (OS1, OS3). These systems are often thought to be
related to descending pain-inhibitory systems [e.g., vmPFC,
part of the DMN and OS2 here; (Bingel et al. 2006; Leknes et
al. 2013)] and are often anticorrelated with pain, as we observed
here (Kong et al. 2010; Wager et al. 2013). In addition to roles
in descending inhibition, cortical DMN regions (part of OS2)
are strongly connected to the hippocampus, forming a system
that may be important for “contextualizing” pain, reducing pain
experience in healthy participants and safe contexts (Woo et
al. 2017), but increasing pain experience when contexts imply
threat (Ploghaus et al. 1999). Thus, disconnection of PS and OS
may imply reduced contextual influences on pain as noxious
stimulus intensity increases. This possibility can be directly
tested in future studies.

Comparisons between Evoked Pain and Chronic Pain
Improved the Understanding of Chronic Pain beyond
Nociception

An important question is how our findings on evoked pain relate
to network-level changes in various chronic pain conditions.

Integrating and comparing findings across studies, methods,
and pain conditions is a complex but crucial endeavor as more
studies produce network-level descriptions of pain. Compar-
ing evoked and chronic pain can help identify whether brain
changes with chronic pain are limited mainly to nociceptive
pathways or extend beyond nociceptive systems to involve novel
functional contributions of non-nociceptive central brain cir-
cuits [e.g., (Baliki et al. 2006; Mansour et al. 2016; Seminowicz and
Moayedi 2017; Woo et al. 2017)]. When pain correlates are limited
mainly to nociceptive pathways, it is more likely that changes
are secondary to enhanced nociceptive input from the periphery,
and peripheral treatments (e.g., surgery) are more likely to be
helpful. Conversely, when changes in extra-nociceptive circuits
support pain and functional impairment, peripheral pathology
and peripheral treatments are less likely to be important. For this
reason, it is important to understand which network-level corre-
lates of chronic pain reflect nociceptive versus extra-nociceptive
systems.

Our findings suggest that during evoked pain, nociceptive
areas are increasingly integrated with extra-nociceptive areas
important for attention, consciousness, memory, and other
aspects of cognition and affect. These changes parallel recent
findings of similar network-level changes with chronic pain.
For example, Kaplan et al. (2019) identified a “rich club” of
highly interconnected regions in FM that is similar to the “pain
supersystem” (PS) we identified here. The strongest increases
in global connectivity in FM versus controls were found in
nociceptive target regions (e.g., mid- and anterior insula), and
membership of nociceptive regions (e.g., posterior insula, S1)
in the “rich club” was found only in patients with the highest
clinical pain intensity. Other studies have focused on extra-
nociceptive, global network measures associated with chronic
pain [e.g., (Mansour et al. 2016; Mano et al. 2018)]. Nonetheless,
these networks also share some features with evoked pain
network topology identified in our study, including increased
connectivity in S1 (Mano et al. 2018), lateral (putatively sensory)
thalamus (Mansour et al. 2016), and posterior insula (Mansour
et al. 2016).

Another common feature of chronic pain is increased
connectivity between nociceptive and “default-mode” regions
(Hemington et al. 2016), paralleling the increased integration
between nociceptive and OS we found in this study. Multiple
studies have found pain-related, between-network connectivity
increases in DMN-ION (Baliki et al. 2014; Kim et al. 2019), DMN-
pain [e.g., (Hashmi et al. 2013; López-Solà et al. 2017)], and
VN-SMN (Shen et al. 2019). Thus, some brain network-level
changes with chronic pain may be related to the pain itself,
either as a predisposing factor or consequence (Baliki et al.
2014); others may be truly extra-nociceptive differences in the
kinds of patients with chronic pain or correlates of functional,
behavioral, and emotional changes beyond pain experience
itself. For example, changes in frontostriatal systems may be
associated with withdrawal and avoidance (Roy et al. 2014; Ren
et al. 2016; Schwartz et al. 2017).

It is interesting when compared with the results of Lee et
al. (2018), who showed decreased frequency assortativity in
chronic pain patients. This difference suggests that there are
qualitative differences between brain changes associated with
evoked pain and changes in baseline connectivity that develop
with chronic pain. Our results suggest that the spread of activ-
ity is limited to one system (albeit one that is substantially
expanded relative to the resting state) and hubs regions were
more inclined to connect with each other, whereas chronic pain
patients may experience broader across-module connectivity
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that makes them vulnerable to explosive synchronization with
strong input (Lee et al. 2018). However, changes in chronic pain
are complex, and there are also similarities between our findings
and module organization with chronic pain (Kaplan et al. 2019),
for example, brain regions within the PS (e.g., insula, ACC and
primary somatosensory) are more tensely connected with the
increase of clinical pain.

Though the integration of findings across various types
of evoked and chronic pain is an important goal, there are
also inconsistencies that make integration challenging. These
include differences in methods (e.g., hub centrality metrics
and region definitions), findings, and emphasis in discussion
of what appear inevitably to be complex patterns of effects.
For example, thalamic hyperconnectivity is a common feature
across disorders in Mansour et al. 2016, but subcortical regions
were not tested in some other studies (e.g., Kaplan et al. 2019).
Posterior insula changes are a central focus in the study of
Kaplan et al. (2019), and some corroborating evidence is apparent
in figures in the work of Mansour et al. (2016), but this is
not discussed. These incompatibilities could be harmonized
in future studies in meta-analyses that directly integrate and
compare data across types of stimuli, brain measures, and pain
conditions.

Implications for Understanding Pain Consciousness

Another important, seldom addressed question concerns what
makes pain conscious. Pain is by definition a subjective,
reportable experience, implying consciousness as a required
element; but our understanding of what makes pain conscious
is limited. Some researchers have described pain as an
emergent, global property (Baliki and Apkarian 2015). While
there are multiple theories of consciousness with different brain
substrates (Boly et al. 2012; Bonhomme et al. 2012; Heine et al.
2012; Barttfeld et al. 2015; Morsella et al. 2016; Tononi et al.
2016), one prominent theory—the “global workspace” theory—
posits that integration of activity in the lateral prefrontal
cortex amplifies representations in other cortical areas that
would otherwise be subliminal, rendering them conscious.
Our findings that pain integrates somatosensory activity with
frontoparietal systems (the CCN here) similar to those identified
by the “global workspace” theory are consistent with this view.
The conscious experience of pain may require connectivity
between cortical targets of nociceptive afferents (generally
located in SMN and ION here) and frontoparietal systems
(CCN). We found that all of these systems are integrated
during pain. These findings are also broadly consistent with
previous work showing loss of consciousness is associated with
impeded integration of frontoparietal system (Schrouff et al.
2011). Interestingly, findings of decreased modularity when
aware of noxious stimuli is also consistent with the view that
awareness is associated with reductions in modularity (Godwin
et al. 2015).

Other relationships between functional connectivity and
conscious experience are also relevant. For example, we found
increased connectivity between thalamus and SMN (both part
of PS). Previous studies have associated consciousness with
thalamocortical connectivity (Alkire and Miller 2005; Boveroux
et al. 2010) and suggested that decreased thalamocortical
connectivity during propofol-induced loss of consciousness
might block cortical arousal to external stimuli (Boveroux et al.
2010). Thus, the pattern of integration of cortical and subcortical
systems we observed here may be related to what makes pain

conscious. This hypothesis needs to be examined further in
future studies.

Limitations
A number of limitations could productively be addressed by
future work. First, our analyses focused on individual differ-
ences, and other types of network-level characterizations based
on different types of data are possible. Our focus on stimulation-
induced responses minimizes sources of variability unrelated to
pain (Geerligs et al. 2015; Finn et al. 2017), but time series con-
nectivity similarities and differences within and between stimu-
lation periods could paint a complementary picture. In addition,
our results reflect average network changes, but characteristics
may vary across individuals in ways we have not captured here.
Constructing a functional network at the individual-person level
is still a challenge for single-trial analysis, and the short duration
of each trial and the limited number of trials are limitations. Sec-
ond, we utilized data from 5 independent datasets with varied
thermal intensity and duration of stimulation. This is a strength
in one sense, as it promotes generalizability across samples,
but it may be less sensitive to individual differences within-
study when stimulus and acquisition parameters are tightly
controlled. In addition, the findings could be further generalized,
for example, to different types of pain. Third, in this study, we
attempted to provide a descriptive label for this “supersystem,”
“pain-related,” as it is indeed empirically pain-related. However,
caution in interpreting its function is warranted, and validating
its profile of sensitivity and specificity is an empirical matter.
We make no claims that “pain-related” means that the system
measures “pain” to the exclusion of any other process. It is
still unclear whether the reorganization of the PS is a pain-
specific change or whether it can be evoked by other types of
salient, intense, affective states (Liang et al. 2019). Recently, we
identified distinct cerebral representations that are related to
pain across multiple types (thermal, mechanical, and visceral)
and are not shared with cognitive control and negative emotion
tasks (Kragel et al. 2018). Such analyses require generalization
and test of specificity across multiple studies and task condi-
tions; the generalizability and specificity of the PS to pain could
productively be further examined using similar approaches.
In addition, we speculated the brain functional reorganization
may result from the pain protective function; however, other
interpretations are also possible. One possible hypothesis could
be that the altered modular organization and hub topology
may represent a suboptimal or pathological brain state, simi-
lar as in patients with chronic pain (Mansour et al. 2016; Lee
et al. 2018; Kaplan et al. 2019). Currently, it is difficult for us to
directly examine other views, but we have indicated increased
efficiency and assortativity of the PS, suggesting the reorganized
network structure do promote the information exchange. More
specific exploration will be performed in the future studies.
Finally, current community detection algorithms based on mod-
ularity maximization may have degeneracy problem especially
for large-scale hierarchical networks (Good et al. 2010), and the
partitions largely rely on the chosen of resolution parameter that
determines the scale of detected communities (He et al. 2018).
Though our findings of the communities are in good accordance
with previous literatures (Bushnell and Apkarian 2006; Kong
et al. 2010; Power et al. 2011; Wager et al. 2013), whether these
results are sensitive to the chosen of algorithms and the reso-
lution parameters still need further exploration. This is beyond
the scope of this study, but will be investigated in our future
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work through varying resolution parameters and via different
modular detection algorithms [e.g., local community methods
(Clauset 2005; Bagrow 2008) and generative models (Rosvall and
Bergstrom 2007; Clauset et al. 2008; Hofman and Wiggins 2008)].

Conclusion
In conclusion, our study showed that painful stimulation drives
a reorganization of functional networks. We found that, when
experiencing nociceptive stimuli, the brain complexity of modu-
lar organization across brain regions is reduced. This may enable
the integration of pain processing across functional subsys-
tem, as well as reduce communication (and access to behav-
ioral output systems) with OS that have less correlation with
pain. The subjective pain experience induced similar changes
in network organization. These alterations enable a person to
rapidly respond to painful stimuli and may bear on under-
standing the bases of consciousness, especially in the domain
of pain.
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