Decoding brain representations of affect

  1. Melzack, R., & Wall, P. D. (1965). Pain mechanisms: a new theory. Science, 150(3699), 971-979. doi:10.1126/science.150.3699.971

  2. Baliki, M. N., Geha, P. Y., Apkarian, A. V., & Chialvo, D. R. (2008). Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. Journal of Neuroscience, 28(6), 1398-1403. doi:10.1523/JNEUROSCI.4123-07.2008

  3. Leknes & Tracey. (2008). A common neurobiology for pain and pleasure. Nature Review Neuroscience 9(4), 314-320.

  4. Wager et al. (2013). An FMRI-based neurologic signature of physical pain. New England Journal of Medicine 368(15), 1388–97.

  5. Rosenberg et al. (2016). A neuromarker of sustained attention from whole-brain functional connectivity. Nature Neuroscience 19(1), 165-171.

  6. Davis et al. (2017). Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations. Nat Rev Neurol 13, 624-638.

  7. Woo et al. (2017). Building better biomarkers: brain models in translational neuroimaging. Nature Neuroscience, 20(3), 365.

  8. Woo et al. (2017). Quantifying cerebral contributions to pain beyond nociception. Nat Commun 8, 14211.

  9. Berridge. (2019). Affective valence in the brain: modules or modes? Nature Review Neuroscience 20(4), 225-234.

  10. Miesen et al. (2019). Neuroimaging-Based biomarkers for pain: State of the Field and Current Directions. PAIN Reports 4(4), e751.

  11. Coghill. (2020). The distributed nociceptive system: A framework for understanding pain. Trends in Neurosciences 43(10), 780-794.

  12. Davis et al. (2020). Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities. Nat Rev Neurol.

  13. Xu et al. (2020). Convergent neural representations of experimentally-induced acute pain in healthy volunteers: A large-scale fMRI meta-analysis. Neuroscience and Biobehavioral Reviews 112, 300-323.

  14. Lee et al. (2021). A neuroimaging biomarker for sustained experimental and clinical pain. Nature Medicine.

home



Psycho-socio-physiological modulation of pain

  1. Ashar, Y. K., Chang, L. J., & Wager, T. D. (2017). Brain mechanisms of the placebo effect: an affective appraisal account. Annual review of clinical psychology, 13, 73-98.

  2. Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76(4), 695-711.

  3. Chen, P. H. A., Cheong, J. H., Jolly, E., Elhence, H., Wager, T. D., & Chang, L. J. (2019). Socially transmitted placebo effects. Nature Human Behaviour, 3(12), 1295-1305.

  4. Falk, E. B., Hyde, L. W., Mitchell, C., Faul, J., Gonzalez, R., Heitzeg, M. M., … & Morrison, F. J. (2013). What is a representative brain? Neuroscience meets population science. Proceedings of the National Academy of Sciences, 110(44), 17615-17622.

  5. Finn, E. S., Huber, L., Jangraw, D. C., Molfese, P. J., & Bandettini, P. A. (2019). Layer-dependent activity in human prefrontal cortex during working memory. Nature neuroscience, 22(10), 1687-1695.

  6. Geuter, S., Koban, L., & Wager, T. D. (2017). The cognitive neuroscience of placebo effects: concepts, predictions, and physiology. Annual review of neuroscience, 40, 167-188.

  7. Huber, L., Finn, E. S., Chai, Y., Goebel, R., Stirnberg, R., Stöcker, T., … & Bandettini, P. A. (2020). Layer-dependent functional connectivity methods. Progress in Neurobiology, 101835.

  8. Losin, E. A. R., Woo, C. W., Medina, N. A., Andrews-Hanna, J. R., Eisenbarth, H., & Wager, T. D. (2020). Neural and sociocultural mediators of ethnic differences in pain. Nature human behaviour, 1-14.

  9. Raja, S. N., Carr, D. B., Cohen, M., Finnerup, N. B., Flor, H., Gibson, S., … & Song, X. J. (2020). The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain, 161(9), 1976-1982.

  10. Yu, Y., Huber, L., Yang, J., Jangraw, D. C., Handwerker, D. A., Molfese, P. J., … & Bandettini, P. A. (2019). Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex. Science advances, 5(5), eaav9053.

  11. Wager, T. D., & Atlas, L. Y. (2015). The neuroscience of placebo effects: connecting context, learning and health. Nature Reviews Neuroscience, 16(7), 403-418.

  12. Woo, C. W., Schmidt, L., Krishnan, A., Jepma, M., Roy, M., Lindquist, M. A., … & Wager, T. D. (2017). Quantifying cerebral contributions to pain beyond nociception. Nature communications, 8(1), 1-14.

home



Understanding natural thoughts, emotions, and pain through natural language and the brain

  1. Andrews-Hanna, J. R., Kaiser, R. H., Turner, A. E., Reineberg, A., Godinez, D., Dimidjian, S., & Banich, M. (2013). A penny for your thoughts: dimensions of self-generated thought content and relationships with individual differences in emotional wellbeing. Frontiers in psychology, 4, 900.

  2. Mildner, J. N., & Tamir, D. I. (2019). Spontaneous thought as an unconstrained memory process. Trends in Neurosciences, 42(11), 763-777.

  3. Çukur, T., Nishimoto, S., Huth, A. G., & Gallant, J. L. (2013). Attention during natural vision warps semantic representation across the human brain. Nature neuroscience, 16(6), 763-770.

  4. Huth, A. G., De Heer, W. A., Griffiths, T. L., Theunissen, F. E., & Gallant, J. L. (2016). Natural speech reveals the semantic maps that tile human cerebral cortex. Nature, 532(7600), 453-458.

  5. Nunez-Elizalde, A. O., Huth, A. G., & Gallant, J. L. (2019). Voxelwise encoding models with non-spherical multivariate normal priors. Neuroimage, 197, 482-492.

  6. Deniz, F., Nunez-Elizalde, A. O., Huth, A. G., & Gallant, J. L. (2019). The representation of semantic information across human cerebral cortex during listening versus reading is invariant to stimulus modality. Journal of Neuroscience, 39(39), 7722-7736.

  7. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

  8. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30, 5998-6008.

  9. Regev, M., Simony, E., Lee, K., Tan, K. M., Chen, J., & Hasson, U. (2018). Propagation of information along the cortical hierarchy as a function of attention while reading and listening to stories. https://doi.org/10.1101/291526

  10. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-Anatomic Fractionation of the Brain’s Default Network. Neuron, 65(4), 550–562. https://doi.org/10.1016/j.neuron.2010.02.005

  11. Horikawa, T., Tamaki, M., Miyawaki, Y., & Kamitani, Y. (2013). Neural Decoding of Visual Imagery During Sleep. Science, 340(6132), 639–642. https://doi.org/10.1126/science.1234330

  12. Smallwood, J., & Schooler, J. W. (2015). The Science of Mind Wandering: Empirically Navigating the Stream of Consciousness. Annual Review of Psychology, 66(1), 487–518. https://doi.org/10.1146/annurev-psych-010814-015331

  13. Sormaz, M., Murphy, C., Wang, H., Hymers, M., Karapanagiotidis, T., Poerio, G., Margulies, D. S., Jefferies, E., & Smallwood, J. (2018). Default mode network can support the level of detail in experience during active task states. Proceedings of the National Academy of Sciences, 115(37), 9318–9323. https://doi.org/10.1073/pnas.1721259115

home



Visceral AI

  1. Juechems, K., & Summerfield, C. (2019). Where Does Value Come From? Trends in Cognitive Sciences, 23(10), 836–850. https://doi.org/10.1016/j.tics.2019.07.012

  2. Keramati, M., & Gutkin, B. (2014). Homeostatic reinforcement learning for integrating reward collection and physiological stability. ELife, 3, e04811. https://doi.org/10.7554/eLife.04811

  3. Man, K., & Damasio, A. (2019). Homeostasis and soft robotics in the design of feeling machines. Nature Machine Intelligence, 1(10), 446–452. https://doi.org/10.1038/s42256-019-0103-7

  4. Botvinick, M., Wang, J. X., Dabney, W., Miller, K. J., & Kurth-Nelson, Z. (2020). Deep Reinforcement Learning and Its Neuroscientific Implications. Neuron, 107(4), 603–616. https://doi.org/10.1016/j.neuron.2020.06.014

  5. Dabney, W., Kurth-Nelson, Z., Uchida, N., Starkweather, C. K., Hassabis, D., Munos, R., & Botvinick, M. (2020). A distributional code for value in dopamine-based reinforcement learning. Nature, 577(7792), 671-675.

  6. Cross, L., Cockburn, J., Yue, Y., & O’Doherty, J. P. (2020). Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations in high-dimensional environments. Neuron.

  7. Yoshida, N. (2018). Homeostatic Agent for General Environment. Journal of Artificial General Intelligence, 8(1), 1–22. https://doi.org/10.1515/jagi-2017-0001

  8. Moerland, T. M., Broekens, J., & Jonker, C. M. (2018). Emotion in reinforcement learning agents and robots: A survey. Machine Learning, 107(2), 443–480. https://doi.org/10.1007/s10994-017-5666-0

  9. Crosby, M., Beyret, B., Shanahan, M., Hernandez-Orallo, J., Cheke, L., & Halina, M. (n.d.). The Animal-AI Testbed and Competition. 13.

  10. McDuff, D., & Kapoor, A. (2019). VISCERAL MACHINES: RISK-AVERSION IN REINFORCEMENT LEARNING WITH INTRINSIC PHYSIOLOGICAL REWARDS. 11.

  11. Haber, N., Mrowca, D., Wang, S., Fei-Fei, L. F., & Yamins, D. L. (n.d.). Learning to Play With Intrinsically-Motivated, Self-Aware Agents. 12.

  12. Neftci, E. O., & Averbeck, B. B. (2019). Reinforcement learning in artificial and biological systems. Nature Machine Intelligence, 1(3), 133–143. https://doi.org/10.1038/s42256-019-0025-4

  13. Singh, S., Barto, A. G., & Chentanez, N. (2005). Intrinsically Motivated Reinforcement Learning: Defense Technical Information Center. https://doi.org/10.21236/ADA440280

  14. Hulme, O. J., Morville, T., & Gutkin, B. (2019). Neurocomputational theories of homeostatic control. Physics of Life Reviews, 31, 214–232. https://doi.org/10.1016/j.plrev.2019.07.005

  15. (Bud) Craig, A. (2003). A new view of pain as a homeostatic emotion. Trends in Neurosciences, 26(6), 303–307. https://doi.org/10.1016/S0166-2236(03)00123-1

  16. Seymour, B. (2019). Pain: A Precision Signal for Reinforcement Learning and Control. Neuron, 101(6), 1029–1041. https://doi.org/10.1016/j.neuron.2019.01.055

  17. Seymour, B., & Mancini, F. (2020). Hierarchical models of pain: Inference, information-seeking, and adaptive control. NeuroImage, 222, 117212.

  18. Damasio, A., & Carvalho, G. B. (2013). The nature of feelings: evolutionary and neurobiological origins. Nature reviews neuroscience, 14(2), 143-152.

  19. Berridge, K. C. (2018). Evolving Concepts of Emotion and Motivation. Frontiers in Psychology, 9, 1647. https://doi.org/10.3389/fpsyg.2018.01647

  20. Tye, K. M. (2018). Neural circuit motifs in valence processing. Neuron, 100(2), 436-452.

home