Decoding brain representations of affect
-
Melzack, R., & Wall, P. D. (1965). Pain mechanisms: a new theory. Science, 150(3699), 971-979. doi:10.1126/science.150.3699.971
-
Baliki, M. N., Geha, P. Y., Apkarian, A. V., & Chialvo, D. R. (2008). Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. Journal of Neuroscience, 28(6), 1398-1403. doi:10.1523/JNEUROSCI.4123-07.2008
-
Leknes & Tracey. (2008). A common neurobiology for pain and pleasure. Nature Review Neuroscience 9(4), 314-320.
-
Wager et al. (2013). An FMRI-based neurologic signature of physical pain. New England Journal of Medicine 368(15), 1388–97.
-
Rosenberg et al. (2016). A neuromarker of sustained attention from whole-brain functional connectivity. Nature Neuroscience 19(1), 165-171.
-
Davis et al. (2017). Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations. Nat Rev Neurol 13, 624-638.
-
Woo et al. (2017). Building better biomarkers: brain models in translational neuroimaging. Nature Neuroscience, 20(3), 365.
-
Woo et al. (2017). Quantifying cerebral contributions to pain beyond nociception. Nat Commun 8, 14211.
-
Berridge. (2019). Affective valence in the brain: modules or modes? Nature Review Neuroscience 20(4), 225-234.
-
Miesen et al. (2019). Neuroimaging-Based biomarkers for pain: State of the Field and Current Directions. PAIN Reports 4(4), e751.
-
Coghill. (2020). The distributed nociceptive system: A framework for understanding pain. Trends in Neurosciences 43(10), 780-794.
-
Davis et al. (2020). Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities. Nat Rev Neurol.
-
Xu et al. (2020). Convergent neural representations of experimentally-induced acute pain in healthy volunteers: A large-scale fMRI meta-analysis. Neuroscience and Biobehavioral Reviews 112, 300-323.
-
Lee et al. (2021). A neuroimaging biomarker for sustained experimental and clinical pain. Nature Medicine.
Psycho-socio-physiological modulation of pain
-
Ashar, Y. K., Chang, L. J., & Wager, T. D. (2017). Brain mechanisms of the placebo effect: an affective appraisal account. Annual review of clinical psychology, 13, 73-98.
-
Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76(4), 695-711.
-
Chen, P. H. A., Cheong, J. H., Jolly, E., Elhence, H., Wager, T. D., & Chang, L. J. (2019). Socially transmitted placebo effects. Nature Human Behaviour, 3(12), 1295-1305.
-
Falk, E. B., Hyde, L. W., Mitchell, C., Faul, J., Gonzalez, R., Heitzeg, M. M., … & Morrison, F. J. (2013). What is a representative brain? Neuroscience meets population science. Proceedings of the National Academy of Sciences, 110(44), 17615-17622.
-
Finn, E. S., Huber, L., Jangraw, D. C., Molfese, P. J., & Bandettini, P. A. (2019). Layer-dependent activity in human prefrontal cortex during working memory. Nature neuroscience, 22(10), 1687-1695.
-
Geuter, S., Koban, L., & Wager, T. D. (2017). The cognitive neuroscience of placebo effects: concepts, predictions, and physiology. Annual review of neuroscience, 40, 167-188.
-
Huber, L., Finn, E. S., Chai, Y., Goebel, R., Stirnberg, R., Stöcker, T., … & Bandettini, P. A. (2020). Layer-dependent functional connectivity methods. Progress in Neurobiology, 101835.
-
Losin, E. A. R., Woo, C. W., Medina, N. A., Andrews-Hanna, J. R., Eisenbarth, H., & Wager, T. D. (2020). Neural and sociocultural mediators of ethnic differences in pain. Nature human behaviour, 1-14.
-
Raja, S. N., Carr, D. B., Cohen, M., Finnerup, N. B., Flor, H., Gibson, S., … & Song, X. J. (2020). The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain, 161(9), 1976-1982.
-
Yu, Y., Huber, L., Yang, J., Jangraw, D. C., Handwerker, D. A., Molfese, P. J., … & Bandettini, P. A. (2019). Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex. Science advances, 5(5), eaav9053.
-
Wager, T. D., & Atlas, L. Y. (2015). The neuroscience of placebo effects: connecting context, learning and health. Nature Reviews Neuroscience, 16(7), 403-418.
-
Woo, C. W., Schmidt, L., Krishnan, A., Jepma, M., Roy, M., Lindquist, M. A., … & Wager, T. D. (2017). Quantifying cerebral contributions to pain beyond nociception. Nature communications, 8(1), 1-14.
Understanding natural thoughts, emotions, and pain through natural language and the brain
-
Andrews-Hanna, J. R., Kaiser, R. H., Turner, A. E., Reineberg, A., Godinez, D., Dimidjian, S., & Banich, M. (2013). A penny for your thoughts: dimensions of self-generated thought content and relationships with individual differences in emotional wellbeing. Frontiers in psychology, 4, 900.
-
Mildner, J. N., & Tamir, D. I. (2019). Spontaneous thought as an unconstrained memory process. Trends in Neurosciences, 42(11), 763-777.
-
Çukur, T., Nishimoto, S., Huth, A. G., & Gallant, J. L. (2013). Attention during natural vision warps semantic representation across the human brain. Nature neuroscience, 16(6), 763-770.
-
Huth, A. G., De Heer, W. A., Griffiths, T. L., Theunissen, F. E., & Gallant, J. L. (2016). Natural speech reveals the semantic maps that tile human cerebral cortex. Nature, 532(7600), 453-458.
-
Nunez-Elizalde, A. O., Huth, A. G., & Gallant, J. L. (2019). Voxelwise encoding models with non-spherical multivariate normal priors. Neuroimage, 197, 482-492.
-
Deniz, F., Nunez-Elizalde, A. O., Huth, A. G., & Gallant, J. L. (2019). The representation of semantic information across human cerebral cortex during listening versus reading is invariant to stimulus modality. Journal of Neuroscience, 39(39), 7722-7736.
-
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
-
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30, 5998-6008.
-
Regev, M., Simony, E., Lee, K., Tan, K. M., Chen, J., & Hasson, U. (2018). Propagation of information along the cortical hierarchy as a function of attention while reading and listening to stories. https://doi.org/10.1101/291526
-
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-Anatomic Fractionation of the Brain’s Default Network. Neuron, 65(4), 550–562. https://doi.org/10.1016/j.neuron.2010.02.005
-
Horikawa, T., Tamaki, M., Miyawaki, Y., & Kamitani, Y. (2013). Neural Decoding of Visual Imagery During Sleep. Science, 340(6132), 639–642. https://doi.org/10.1126/science.1234330
-
Smallwood, J., & Schooler, J. W. (2015). The Science of Mind Wandering: Empirically Navigating the Stream of Consciousness. Annual Review of Psychology, 66(1), 487–518. https://doi.org/10.1146/annurev-psych-010814-015331
-
Sormaz, M., Murphy, C., Wang, H., Hymers, M., Karapanagiotidis, T., Poerio, G., Margulies, D. S., Jefferies, E., & Smallwood, J. (2018). Default mode network can support the level of detail in experience during active task states. Proceedings of the National Academy of Sciences, 115(37), 9318–9323. https://doi.org/10.1073/pnas.1721259115
Visceral AI
-
Juechems, K., & Summerfield, C. (2019). Where Does Value Come From? Trends in Cognitive Sciences, 23(10), 836–850. https://doi.org/10.1016/j.tics.2019.07.012
-
Keramati, M., & Gutkin, B. (2014). Homeostatic reinforcement learning for integrating reward collection and physiological stability. ELife, 3, e04811. https://doi.org/10.7554/eLife.04811
-
Man, K., & Damasio, A. (2019). Homeostasis and soft robotics in the design of feeling machines. Nature Machine Intelligence, 1(10), 446–452. https://doi.org/10.1038/s42256-019-0103-7
-
Botvinick, M., Wang, J. X., Dabney, W., Miller, K. J., & Kurth-Nelson, Z. (2020). Deep Reinforcement Learning and Its Neuroscientific Implications. Neuron, 107(4), 603–616. https://doi.org/10.1016/j.neuron.2020.06.014
-
Dabney, W., Kurth-Nelson, Z., Uchida, N., Starkweather, C. K., Hassabis, D., Munos, R., & Botvinick, M. (2020). A distributional code for value in dopamine-based reinforcement learning. Nature, 577(7792), 671-675.
-
Cross, L., Cockburn, J., Yue, Y., & O’Doherty, J. P. (2020). Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations in high-dimensional environments. Neuron.
-
Yoshida, N. (2018). Homeostatic Agent for General Environment. Journal of Artificial General Intelligence, 8(1), 1–22. https://doi.org/10.1515/jagi-2017-0001
-
Moerland, T. M., Broekens, J., & Jonker, C. M. (2018). Emotion in reinforcement learning agents and robots: A survey. Machine Learning, 107(2), 443–480. https://doi.org/10.1007/s10994-017-5666-0
-
Crosby, M., Beyret, B., Shanahan, M., Hernandez-Orallo, J., Cheke, L., & Halina, M. (n.d.). The Animal-AI Testbed and Competition. 13.
-
McDuff, D., & Kapoor, A. (2019). VISCERAL MACHINES: RISK-AVERSION IN REINFORCEMENT LEARNING WITH INTRINSIC PHYSIOLOGICAL REWARDS. 11.
-
Haber, N., Mrowca, D., Wang, S., Fei-Fei, L. F., & Yamins, D. L. (n.d.). Learning to Play With Intrinsically-Motivated, Self-Aware Agents. 12.
-
Neftci, E. O., & Averbeck, B. B. (2019). Reinforcement learning in artificial and biological systems. Nature Machine Intelligence, 1(3), 133–143. https://doi.org/10.1038/s42256-019-0025-4
-
Singh, S., Barto, A. G., & Chentanez, N. (2005). Intrinsically Motivated Reinforcement Learning: Defense Technical Information Center. https://doi.org/10.21236/ADA440280
-
Hulme, O. J., Morville, T., & Gutkin, B. (2019). Neurocomputational theories of homeostatic control. Physics of Life Reviews, 31, 214–232. https://doi.org/10.1016/j.plrev.2019.07.005
-
(Bud) Craig, A. (2003). A new view of pain as a homeostatic emotion. Trends in Neurosciences, 26(6), 303–307. https://doi.org/10.1016/S0166-2236(03)00123-1
-
Seymour, B. (2019). Pain: A Precision Signal for Reinforcement Learning and Control. Neuron, 101(6), 1029–1041. https://doi.org/10.1016/j.neuron.2019.01.055
-
Seymour, B., & Mancini, F. (2020). Hierarchical models of pain: Inference, information-seeking, and adaptive control. NeuroImage, 222, 117212.
-
Damasio, A., & Carvalho, G. B. (2013). The nature of feelings: evolutionary and neurobiological origins. Nature reviews neuroscience, 14(2), 143-152.
-
Berridge, K. C. (2018). Evolving Concepts of Emotion and Motivation. Frontiers in Psychology, 9, 1647. https://doi.org/10.3389/fpsyg.2018.01647
-
Tye, K. M. (2018). Neural circuit motifs in valence processing. Neuron, 100(2), 436-452.